angiotensin ii, des-phe(8)- has been researched along with Glucose Intolerance in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 5 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Deng, H; Gao, F; Huang, C; Li, W; Ma, X; Wang, S; Wang, Y; Xuan, X; Yuan, L | 1 |
Arnold, AC; Bingaman, SS; Lindsey, SH; Loloi, J; Miller, AJ; Shen, B; Silberman, Y; Wang, M; White, MC | 1 |
Campagnole-Santos, MJ; de Paula, AM; dos Santos, RA; Ferreira, AV; Garcia, ZM; Guimarães, AL; Oliveira Andrade, JM; Paraíso, AF; Santos, SH; Sinisterra, RD; Sousa, FB | 1 |
Basu, R; Das, SK; Grant, MB; Lopaschuk, GD; McLean, BA; Mori, J; Oudit, GY; Parajuli, N; Patel, VB; Penninger, JM; Ramprasath, T | 1 |
Hanasaki-Yamamoto, H; Hongyo, K; Kamide, K; Kawai, T; Oguro, R; Ohishi, M; Rakugi, H; Sugimoto, K; Takami, Y; Takeda, M; Takemura, Y; Takeshita, H; Takeya, Y; Tatara, Y; Yamamoto, K | 1 |
5 other study(ies) available for angiotensin ii, des-phe(8)- and Glucose Intolerance
Article | Year |
---|---|
Activation of ACE2/angiotensin (1-7) attenuates pancreatic β cell dedifferentiation in a high-fat-diet mouse model.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Cell Dedifferentiation; Cell Lineage; Diet, High-Fat; Glucose Intolerance; Insulin; Insulin Resistance; Insulin Secretion; Insulin-Secreting Cells; Male; Mice; Mice, Inbred C57BL; Peptide Fragments; Peptidyl-Dipeptidase A; Weight Gain | 2018 |
Sex differences in metabolic effects of angiotensin-(1-7) treatment in obese mice.
Topics: Angiotensin I; Animals; Diet, High-Fat; Energy Metabolism; Female; Glucose Intolerance; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; Obesity; Peptide Fragments; Sex Characteristics | 2019 |
Cross talk between angiotensin-(1-7)/Mas axis and sirtuins in adipose tissue and metabolism of high-fat feed mice.
Topics: Administration, Oral; Angiotensin I; Animals; Antimetabolites; Cells, Cultured; Diet, High-Fat; Drug Evaluation, Preclinical; Gene Expression; Glucose Intolerance; Hyperinsulinism; Insulin Resistance; Intra-Abdominal Fat; Lipolysis; Male; Mice; Obesity; Peptide Fragments; Primary Cell Culture; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Resistin; Resveratrol; Sirtuins; Stilbenes | 2014 |
ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity.
Topics: Adiponectin; Adipose Tissue; AMP-Activated Protein Kinases; Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Blood Glucose; Blotting, Western; Diet, High-Fat; Enzyme-Linked Immunosorbent Assay; Glucose Intolerance; Heart; Heart Failure; Humans; Inflammation; Insulin Resistance; Macrophages; Mice; Mice, Knockout; Myocardium; Obesity; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Pericardium; Phosphorylation; Real-Time Polymerase Chain Reaction; Stroke Volume; Tumor Necrosis Factor-alpha; Vasodilator Agents; Weight Gain | 2016 |
Loss of ACE2 exaggerates high-calorie diet-induced insulin resistance by reduction of GLUT4 in mice.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Diet, High-Fat; Dietary Carbohydrates; Energy Intake; Glucose; Glucose Intolerance; Glucose Transporter Type 4; Homeostasis; Insulin Resistance; MEF2 Transcription Factors; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscle, Skeletal; Myoblasts; Myogenic Regulatory Factors; Peptide Fragments; Peptidyl-Dipeptidase A | 2013 |