angiotensin ii, des-phe(8)- has been researched along with Disease Models, Animal in 181 studies
*Disease Models, Animal: Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. [MeSH]
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 19 (10.50) | 29.6817 |
2010's | 132 (72.93) | 24.3611 |
2020's | 30 (16.57) | 2.80 |
Authors | Studies |
---|---|
Alenina, N; Alves, DT; Bader, M; Campagnole-Santos, MJ; Coimbra-Campos, LMC; Ferreira, AJ; Martins, AS; Mendes, LF; Popova, E; Qadri, F; Sampaio, WO; Santos, RAS; Todiras, M; Vieira, MAR | 1 |
Campagnole-Santos, MJ; Campolina-Silva, GH; Cramer, A; Galvão, I; Grossi, LC; Lima, KM; Miranda, TC; Negreiros-Lima, GL; Pinho, V; Santos, RA; Sousa, LP; Souza, JA; Sugimoto, MA; Tavares, LP; Teixeira, LC; Teixeira, MM; Vago, JP; Valiate, BV; Zaidan, I | 1 |
Carletti, R; Castoldi, G; di Gioia, CRT; Ippolito, S; Pelucchi, S; Stella, A; Zatti, G; Zerbini, G | 1 |
Almeida-Santos, AF; Colpo, GD; Furr Stimming, E; Guatimosim, C; Joviano-Santos, JV; Kangussu, LM; Latham, LB; Machado, TCG; Miranda, AS; Rocha, NP; Simões E Silva, AC; Soares, KB; Teixeira, AL; Valadão, PAC | 1 |
Ballasy, NN; Belke, D; Fedak, PWM; Gomes, KP; Jadli, AS; Mackay, CDA; Meechem, M; Patel, VB; Thompson, J; Wijesuriya, TM | 1 |
Batalhão, ME; Branco, LGS; Cárnio, EC; de Jesus, AA; Filho, MAM; Navegantes, LCC; Passaglia, P; Silva, HB; Trajano, IP | 1 |
Alabsi, W; Hay, M; Largent-Milnes, TM; Polt, R; Sulaiman, MI; Szabo, L; Vanderah, TW | 1 |
Liu, X; Xu, J; Yu, Z | 1 |
Ballasy, NN; Belke, D; Fedak, PWM; Gomes, KP; Jadli, AS; Patel, VB; Wijesuriya, TM | 1 |
Cheng, C; Cheng, J; Li, H; Lu, L; Ma, J; Sui, W; Xu, J; Xu, X; Xue, F; Yang, J; Zhang, C; Zhang, J; Zhang, M; Zhang, Y | 1 |
Akhtar, S; Babyson, RS; Benter, IF; El-Hashim, AZ; Ezeamuzie, CI; Khajah, MA; Renno, WM | 1 |
Franklin, R; Krakovsky, M; Kuipers, A; Levy, A; Moll, GN | 1 |
Carretero, OA; Cerniello, FM; Gironacci, MM; Silva, MG | 1 |
Bastos, AC; Bezerra, FS; Campagnole Santos, MJ; Gregório, JF; Magalhães, GS; Matos, NA; Motta-Santos, D; Rodrigues-Machado, MG; Santos, RAS | 1 |
Dang, Z; Ge, R; Jin, G; Li, Z; Lu, D; Ma, L; Nan, X; Su, S | 1 |
Fujita, M; Hung, WY; Nakagawa, K; Nakagawasai, O; Nemoto, W; Tadano, T; Tan-No, K; Yamagata, R | 1 |
Cao, XR; Dong, B; Hei, NH; Li, JL; Ma, H; Wang, YL; Yan, WJ | 1 |
Lin, X; Liu, Q; Lu, J; Shi, J; Sun, M; Yue, Y; Zhu, D | 1 |
Barcelos, LS; Baroni, IF; Campagnole-Santos, MJ; Cançado-Ribeiro, ATP; Gregório, JF; Magalhães, GS; Pinho, V; Ramos, KE; Rodrigues-Machado, MG; Santos, RAS; Teixeira, MM | 1 |
Pinho, V; Sousa, LP; Teixeira, MM | 1 |
Braga, PPP; Castro, CH; Colugnati, DB; de Lima, CQ; Ghazale, PP; Gomes, KP; Mendes, EP; Pansani, AP; Pedrino, GR; Xavier, CH | 1 |
Alzamora, AC; Barbosa, CM; Barbosa, MA; Campagnole-Santos, MJ; de Sousa, GG; Lima, TC; Souza Dos Santos, RA | 1 |
Heng, CKM; Liao, W; Mei, D; Tan, WSD; Wong, WSF | 1 |
Chai, CY; Chen, IC; Dai, ZK; Hsu, JH; Lin, JY; Liu, YC; Wu, BN; Yeh, JL | 1 |
Deminice, R; Hyatt, HW; Nguyen, BL; Ozdemir, M; Powers, SK; Yoshihara, T | 1 |
Cao, Y; Chen, J; Huang, LP; Liu, Z; Wang, BJ; Yang, XP; Yang, ZL; Zhou, HR; Zhu, L | 1 |
Fujita, M; Nakagawasai, O; Nemoto, W; Tan-No, K; Yamagata, R | 1 |
Białas, M; Bujak-Giżycka, B; Jawień, J; Kiepura, A; Kuś, K; Olszanecki, R; Stachowicz, A; Stachyra, K; Suski, M; Totoń-Żurańska, J; Wiśniewska, A; Łomnicka, M | 1 |
Garabadu, D; Varshney, V | 1 |
Barcelos, LS; Campagnole-Santos, MJ; Cassini-Vieira, P; Gonzaga, KER; Gregório, JF; Magalhães, GS; Motta-Santos, D; Rodrigues-Machado, MG; Santos, RAS; Vieira, MAR | 1 |
Esmaili Dahej, M; Hafizi Barjin, Z; Moradi, A; Safari, F; Soltan, F; Yadegari, M | 1 |
Fu, X; Li, Y; Shi, C; Song, Y; Zhang, Y; Zhao, L | 1 |
Chen, WQ; Cheng, J; Ji, XP; Mao, Y; Qiao, L; Tie, YY; Xu, QB; Xu, YY; Zhai, CG; Zhang, C; Zhang, Y | 1 |
Kompanowska-Jezierska, E; Kuczeriszka, M; Navar, LG; Prieto, MC; Sadowski, J | 1 |
Barcelos, LS; Barroso, LC; Campagnole-Santos, MJ; Gregório, JF; Magalhaes, GS; Motta-Santos, D; Oliveira, AC; Perez, DA; Pinho, V; Reis, AC; Rodrigues-Machado, MG; Santos, RAS; Teixeira, MM | 1 |
Ho, JK; Nation, DA | 1 |
Chen, QF; Hao, H; Huang, YH; Kuang, XD; Yuan, QF; Zhang, T; Zhou, XY | 1 |
Bruce, EB; Carter, CS; Kirichenko, N; Morgan, D; Sakarya, Y; Scarpace, PJ; Sumners, C; Toklu, HZ; Tümer, N | 1 |
Chen, J; Li, Z; Liu, M; Niu, W; Sun, X; Wang, Y; Wu, H | 1 |
Akasaka, H; Fujimoto, T; Fukada, SI; Hamano, G; Hanasaki-Yamamoto, H; Hongyo, K; Imaizumi, Y; Inagaki, T; Itoh, N; Kawai, T; Nagasawa, M; Nakagami, H; Nozato, S; Nozato, Y; Rakugi, H; Shirai, M; Sugimoto, K; Takahashi, T; Takami, Y; Takeda, M; Takeda, S; Takeshita, H; Takeya, Y; Tsuchimochi, H; Yamamoto, K; Yokoyama, S | 1 |
Du, X; Huang, Y; Jin, S; Li, X; Li, Y; Wang, D; Wang, G; Wu, B; You, Y; Zhu, X | 1 |
Ka, SM; Liao, MH; Shih, CC; Tsai, HJ; Tsao, CM; Wu, CC | 1 |
Chappell, MC; Diz, DI; Nautiyal, M; Shaltout, HA | 1 |
Bhattacharya, SK; Chen, Y; Liu, C; Meng, W; Sun, Y; Zhao, T; Zhao, W | 1 |
Arroja, MMC; Holmes, WM; McCabe, C; Nicklin, SA; Reid, E; Roy, LA; Vallatos, AV; Work, LM | 1 |
Cao, C; Hasegawa, Y; Hayashi, K; Kim-Mitsuyama, S; Takemoto, Y | 1 |
Chen, M; Chen, Q; Cheng, L; Guo, T; Huang, F; Liu, J; Liu, S; Lu, J; Wang, W; Yang, X | 1 |
Gao, X; Li, S; Wang, R; Wei, Z; Xu, D; Xu, H; Yang, F; Yi, X; Zhang, B; Zhang, G; Zhang, H; Zhang, L; Zhang, X; Zhang, Y; Zhu, Y | 1 |
Cassali, GD; Galvão, I; Kraemer, L; Melo, EM; Rago, F; Russo, RC; Santos, RAS; Teixeira, MM | 1 |
Gao, XM; Xu, H; Yang, F; Zhang, BN; Zhang, GZ; Zhang, X | 1 |
Abbate, M; Benigni, A; Cassis, P; Cerullo, D; Corna, D; Locatelli, M; Remuzzi, G; Rottoli, D; Villa, S; Zoja, C | 1 |
Ihm, CG; Jeong, KH; Jung, SW; Kim, DJ; Kim, DO; Kim, JS; Kim, YG; Lee, SH; Lee, SY; Lee, TW; Lee, YH; Moon, JY; Park, SH; Sohn, IS; Song, SJ | 1 |
Cui, BP; Han, Y; Li, P; Sun, HJ; Zhou, YB | 1 |
Ahmad, S; Batlle, D; Brosnihan, KB; Ferrario, CM; Moniwa, N; Varagic, J; VonCannon, JL; Wysocki, J | 1 |
Afzal, A; Desland, F; Mecca, AP; Mocco, J; Pioquinto, DJ; Regenhardt, RW; Sumners, C | 1 |
Gong, X; Li, G; Li, Y; Song, Y; Yuan, L | 1 |
Li, G; Li, X; Li, Z; Liu, A; Liu, Y; Su, J; Sun, L; Xu, Y; Zhu, Y | 1 |
Bader, M; Castro Perez, A; Duarte, ID; Lima, Mde P; Pacheco, CM; Pacheco, Dda F; Pesquero, JL; Souza, Ade L | 1 |
Bader, M; Barroso, LC; Coelho, FM; Costa, VV; Oliveira, ML; Queiroz-Junior, CM; Santos, RA; Silva, AC; Silva, TA; Silveira, KD; Sousa, LF; Teixeira, MM; Vieira, AT | 1 |
Arantes, RM; Bader, M; Barroso, LC; Cisalpino, D; Dos Santos, RA; Lima, CX; Silveira, KD; Simões-E-Silva, AC; Teixeira, MM; Vieira, AT | 1 |
Ager, EI; Christophi, C; Neo, J; Wen, SW | 1 |
Guo, F; Hay, M; Johnson, AK; Johnson, RF; Xue, B; Zhang, Z | 1 |
Ahmad, S; Ferrario, CM; Moniwa, N; Nagata, S; Simington, SW; Varagic, J; Voncannon, JL | 1 |
Ali, Q; Hussain, T; Wu, Y | 1 |
dos Santos, RA; Ferreira, AJ; Fontes, MA; Martins Lima, A; Raizada, MK; Velloso, EP; Wallukat, G; Xavier, CH | 1 |
Caliari, MV; Campagnole-Santos, MJ; Cara, DC; Cardoso, JA; Kangussu, LM; Lautner, RQ; Magalhães, GS; Marques, FD; Murari, A; Noviello, ML; Oliveira, ML; Pereira, JM; Rodrigues-Machado, MG; Santos, RA | 1 |
Costa-Fraga, FP; da Silva, D; da Silva, RF; De Sousa, FB; Fraga-Silva, RA; Mach, F; Montecucco, F; Santos, RA; Savergnini, SQ; Sinisterra, RD; Stergiopulos, N | 1 |
Chen, Q; Huang, Y; Liu, L; Pan, C; Qiu, H; Yang, Y | 1 |
Ding, W; Gu, Y; Xu, C; Zhang, M | 1 |
Aguiar, DC; Alenina, N; Almeida-Santos, AF; Bader, M; Campagnole-Santos, MJ; Fontes, MA; Kangussu, LM; Santos, RA | 1 |
Acuña, MJ; Bader, M; Brandan, E; Cabello-Verrugio, C; Cabrera, D; Muñoz-Canoves, P; Olguin, H; Pessina, P; Santos, RA; Vio, CP | 1 |
Cai, SX; Huang, S; Li, T; Li, W; Li, X; Luo, W; Meng, Y; Wu, PS; Yu, CH | 1 |
Clasen, T; Fähling, M; Ishak, B; Kojda, G; Mende, S; Patzak, A; Potthoff, SA; Rump, LC; Sivritas, SH; Stamer, S; Stegbauer, J; Suvorava, T; Thieme, M | 1 |
Chapleau, MW; Sabharwal, R | 1 |
Bai, HY; Chisaka, T; Higaki, J; Horiuchi, M; Iwanami, J; Kanno, H; Min, LJ; Mogi, M; Nakaoka, H; Ogimoto, A; Ohshima, K; Tsukuda, K; Wang, XL | 1 |
Cui, L; Liu, R; Qi, H; Wang, J; Wang, Y; Wen, Y; Yin, C | 2 |
Chen, Y; Liu, C; Liu, H; Meng, W; Sun, Y; Zhao, T; Zhao, W | 1 |
Batlle, D; Haber, PK; Haque, SK; Maier, C; Wysocki, J; Ye, M | 1 |
Alghamri, MS; Elased, KM; Grobe, N; Meszaros, JG; Morris, M | 1 |
Bertolotto, M; Caffa, I; Capettini, LA; Costa-Fraga, FP; da Silva, RF; Dallegri, F; De Sousa, FB; Fraga-Silva, RA; Galan, K; Lenglet, S; Mach, F; Montecucco, F; Nencioni, A; Palombo, D; Pane, B; Pelli, G; Pende, A; Santos, RA; Savergnini, SQ; Sinisterra, RD; Soncini, D; Spinella, G; Stergiopulos, N | 1 |
Braga, JF; Campagnole-Santos, MJ; Guimaraes, PS; Nadu, AP; Oliveira, MF; Santos, RA; Schreihofer, A | 1 |
Harris, RA; Sullivan, JC; Zimmerman, MA | 1 |
Ji, L; Shi, J; Tian, M; Xie, W; Xu, C; Zhu, D | 1 |
Beltz, TG; Guo, F; Hay, M; Johnson, AK; Xue, B; Zhang, Z | 1 |
Alsaadon, H; Habiyakare, B; Hayes, A; Mathai, ML; Zulli, A | 1 |
Li, G; Li, J; Liu, E; Qi, L; Yang, W; Zhao, J | 1 |
Bíbová, J; Červenka, L; Hampl, V; Herget, J; Husková, Z; Jíchová, Š; Kramer, HJ; Sadowski, J; Vaňourková, Z | 1 |
Baňasová, A; Bíbová, J; Červenka, L; Hampl, V; Herget, J; Husková, Z; Jíchová, Š; Kujal, P; Sadowski, J; Vaňourková, Z; Vernerová, Z | 1 |
Andrews, KL; Chin-Dusting, JP; Dominiczak, AF; Graham, D; Head, GA; Jennings, GL; McBride, MW; Sampson, AK; Thomas, MC | 1 |
Daniell, H; Francis, J; Jin, G; Katovich, MJ; Kwon, KC; Li, Q; Lin, S; Nair, A; Qi, Y; Raizada, MK; Rathinasabapathy, A; Shenoy, V; Shil, P; Song, C | 1 |
Daniell, H; Kwon, KC; Li, Q; Shil, PK; Verma, A; Zhu, P | 1 |
Abrigo, J; Brandan, E; Cabello-Verrugio, C; Meneses, C; Morales, MG; Simon, F | 1 |
Guo, RW; Kuang, CW; Liu, B; Xi, YY; Yang, LX | 1 |
Akhtar, S; Benter, IF; El-Hashim, AZ; Makki, B; Yousif, MH | 1 |
Carroll, MA; Chander, PN; Kang, Y; Stier, CT | 1 |
Brzozowski, B; Brzozowski, T; Konturek, SJ; Krzysiek-Maczka, G; Kwiecien, S; Pajdo, R; Pawlik, MW; Ptak-Belowska, A; Strzalka, M | 1 |
Abreu, SC; Barcelos, LS; Caliari, MV; Campagnole-Santos, MJ; Magalhães, GS; Motta-Santos, D; Prata, LO; Rocco, PR; Rodrigues-Machado, MG; Santos, RA; Silva, AR | 1 |
Fan, X; Fan, Y; He, J; Li, X; Wang, L; Wang, W; Wu, H; Yang, H; Yang, Z | 1 |
Becher, PM; Danser, AH; De Vries, R; Roks, AJ; Sevá Pessôa, B; Sneep, S; Tempel, D; Van Beusekom, H; Van Der Velden, VH; Van Veghel, R; Westermann, D | 1 |
Chen, X; Dong, B; Dong, XF; Hao, QQ; Li, SY; Tengbeh, AF; Yu, QT; Zhang, Y; Zhang, YH; Zhou, XM | 1 |
Chen, Y; Gao, F; Hao, P; Liu, Y; Yang, J; Zhang, C; Zhang, K; Zhang, M; Zhang, Y | 1 |
Del Valle-Mondragón, L; Guzmán-Hernández, EA; Ibarra-Barajas, M; Pastelín-Hernández, G; Sánchez-Mendoza, MA; Villalobos-Molina, R | 1 |
Dong, M; Guan, J; Meng, X; Niu, R; Sun, Y; Yang, J; Yang, X; Zhang, C; Zhang, Y | 1 |
Han, Z; Jia, S; Li, Y; Liang, B; Wang, C; Xue, J; Zhang, Y | 1 |
Gao, Q; Jiang, T; Lu, H; Tan, L; Tian, YY; Yu, JT; Zhang, YD; Zhao, HD; Zhou, JS; Zhu, XC | 1 |
Bürgelová, M; Červenka, L; Hammock, BD; Husková, Z; Hwang, SH; Imig, JD; Melenovský, V; Sadowski, J; Škaroupková, P; Sporková, A | 1 |
Alves, MN; Campagnole-Santos, MJ; de Almeida, PW; Dos Santos, RA; Gavioli, M; Greco, L; Guatimosim, S; Jesus, IC; Lima, Rde F; Melo, MB; Mitraud, L; Nocchi, E; Parreira, A; Resende, RR; Santiago, NM | 1 |
Cheng, CP; Cheng, HJ; Ferrario, CM; Li, T; Zhou, P | 1 |
Bihl, JC; Chen, S; Chen, Y; Ma, X; Xiao, X; Zhang, C; Zhao, B; Zhao, Y | 1 |
Han, Y; Li, P; Sun, HJ; Zhang, F | 1 |
Chen, B; Chen, X; Du, H; Katovich, MJ; Li, A; Li, H; Li, J; Pei, N; Qi, Y; Sumners, C; Wan, R; Wei, W; Zhang, Y; Zheng, H | 1 |
Bracey, DN; Callahan, MF; Emory, CL; Gallagher, PE; Smith, TL; Tallant, EA; Wiggins, WF; Willey, JS | 1 |
Meeks, CJ; Papinska, AM; Rodgers, KE; Soto, M | 1 |
Ananthalakshmi, KV; Fateel, MM; Khajah, MA; Luqmani, YA | 1 |
Arnold, AC; Biaggioni, I; Bracy, DP; Otero, YF; Wasserman, DH; Williams, IM | 1 |
Hasegawa, Y; Kim-Mitsuyama, S; Koibuchi, N; Ma, M; Nakagata, N; Nakagawa, T; Senju, S; Uekawa, K | 1 |
Gebolys, K; Klein, S; Meinert, C; Tetzner, A; Trebicka, J; Uhlich, A; Villacañas, Ó; Walther, T | 1 |
Araújo, TS; Cerqueira, GS; Costa, DS; Martins, CS; Medeiros, JV; Nicolau, LA; Pacífico, DM; Silva, RO; Sousa, FB; Sousa, NA; Souza, FM; Souza, LK; Souza, MH | 1 |
Kibel, A | 1 |
Batich, CD; Byrne, BJ; Cogle, CR; Ferreira, LF; Handberg, EM; Huo, T; Pepine, CJ; Petersen, JW; Qi, Y; Rocca, DG; Rubiano, A; Ruchaya, PJ; Simmons, CS; Wate, PS; Willenberg, BJ; Wise, EA | 1 |
An, L; Li, CS; Liu, QT; Tong, N; Xiao, HL; Yang, J; Zhao, LX | 1 |
Arnold, MR; Forte, BL; Hay, M; Largent-Milnes, TM; Slosky, LM; Staatz, WD; Vanderah, TW; Zhang, H | 1 |
Barnes, CA; Constantopoulos, E; Hay, M; Konhilas, J; Samareh-Jahani, F; Uprety, AR; Vanderah, TW | 1 |
Hu, K; Kang, J; Lu, W; Tang, S; Xu, L; Yu, S; Zhou, X | 1 |
Chen, H; Cui, Y; Li, S; Liu, J; Song, J; Zhang, F | 1 |
Lu, J; Shi, J; Zhang, Y | 1 |
Bader, M; Baltatu, OC; Campos, LA; Iliescu, R; Oliveira, ML; Popova, E; Rentzsch, B; Santos, RA; Todiras, M | 1 |
Chappell, MC; Diz, DI; Figueroa, JP; Rose, JC; Shaltout, HA | 1 |
Bader, M; Bürgelová, M; Cervenka, L; Dvorák, P; Kramer, HJ; Malý, J; Opocenský, M; Thumová, M; Vanourková, Z; Zelízko, M | 1 |
Basu, R; Guo, D; Kassiri, Z; Liu, PP; Oudit, GY; Penninger, JM; Scholey, JW; Wang, X; Zhong, J | 1 |
Byku, M; Macarthur, H; Westfall, TC | 1 |
Border, WA; Huang, Y; Noble, NA; Zhang, J | 1 |
Almeida, AP; Almeida, PW; Alves, MN; Bader, M; Castro, CH; Dias-Peixoto, MF; Fagundes-Moura, CR; Ferreira, AJ; Gava, E; Gomes, ER; Guatimosim, S; Guimarães, AM; Kitten, GT; Rentzsch, B; Reudelhuber, T; Santos, RA | 1 |
Arranz, C; Dominici, FP; Giani, JF; Mayer, MA; Muñoz, MC; Taira, CA; Toblli, JE; Turyn, D; Veiras, LC | 1 |
Chudakov, DM; Guo, F; Kasparov, S; Lane, S; Liu, B; Paton, JF; Souslova, EA; Tang, F | 1 |
Burns, KD; Dilauro, M; Genest, D; Robertson, SJ; Zimpelmann, J | 1 |
Casley, D; Gaspari, TA; Tesanovic, S; Vinh, A; Widdop, RE | 1 |
Allahdadi, K; Bader, M; Beiman, M; Cohen, Y; Cojocaru, G; Costa-Fraga, FP; de Almeida, AP; de Paula-Carvalho, V; Fraga-Silva, RA; Lautner, RQ; Pessoa, DC; Rotman, G; Santos, RA; Savergnini, SQ | 1 |
Durand, MJ; Lombard, JH; Raffai, G; Weinberg, BD | 1 |
Arranz, C; Costa, MA; Gironacci, MM; Gomez, KA; Lopez Verrilli, MA; Nakagawa, P; Peña, C | 1 |
Burchill, L; Burrell, LM; Dean, RG; Griggs, K; Velkoska, E | 1 |
Andersen, ML; Bergamaschi, CT; Campos, RR; Casarini, DE; Perry, JC; Tufik, S | 1 |
Botros, FT; Casarini, DE; Feng, Y; Fernandes, FB; González-Villalobos, RA; Kobori, H; Lara, LS; Martin, VL; Navar, LG; Pagán, J; Prieto, MC; Satou, R | 1 |
Cassis, LA; Daugherty, A; Gurley, SB; Howatt, DA; Lu, H; Thatcher, SE; Zhang, X | 1 |
Basu, R; Bodiga, S; Guo, D; Holland, SM; Kassiri, Z; Liu, GC; Lo, J; Oudit, GY; Penninger, JM; Scholey, JW; Wang, W; Zhong, JC | 1 |
Casarini, DE; Cunha, T; Flues, K; Irigoyen, MC; Moraes-Silva, I; Moreira, ED; Mostarda, C; Paulini, J; Piratello, AC; Salemi, V; Sirvente, R; Souza, PR | 1 |
Abul, HT; Akhtar, S; Al-Khaledi, G; Benter, IF; Canatan, H; Renno, WM | 1 |
Hirooka, Y; Hoka, S; Ito, K; Kishi, T; Nakagaki, T; Sunagawa, K | 1 |
Alenina, N; Bader, M; Costa-Fraga, FP; De Sousa, FB; Fraga-Silva, RA; Santos, RA; Sinisterra, RD | 1 |
Grant, MB; Hauswirth, WW; Lei, B; Lewin, AS; Li, Q; Liu, X; Nakagawa, T; Raizada, MK; Shan, Z; Verma, A; Yuan, L | 1 |
Belatti, DA; Curry, PL; Gao, L; Kar, S; Zucker, IH | 1 |
Gellar, MA; Kline, JA; Marchick, MR; Obraztsova, M; Stuart, L; Watts, JA | 1 |
Gurusamy, N; Kodama, M; Lakshmanan, AP; Ma, M; Sukumaran, V; Suzuki, K; Veeraveedu, PT; Watanabe, K; Yamaguchi, K | 1 |
Bos, AP; Florquin, S; Kamilic, J; Lutter, R; Moll, GN; Specht, PA; van der Loos, CM; van Goor, H; van Woensel, JB; Wösten-van Asperen, RM | 1 |
Chappell, MC; Diz, DI; Rose, JC; Shaltout, HA | 1 |
Boustany-Kari, CM; Cassis, LA; Gupte, M; Karounos, M; Shoemaker, R; Thatcher, SE; Yiannikouris, F; Zhang, X | 1 |
Kim, SH; Lee, SH; Lim, JM; Oh, YB; Shah, A | 1 |
Chappell, MC; Diz, DI; Gallagher, PE; Garcia-Espinosa, MA; Shaltout, HA | 1 |
Akhtar, S; Benter, IF; Dhaunsi, GS; Makki, BM; Qabazard, BA; Yousif, MH | 1 |
Campagnole-Santos, MJ; Fontes, MA; Guimaraes, PS; Santiago, NM; Santos, RA; Velloso, EP; Xavier, CH | 1 |
Batlle, D; Evora, K; Garcia-Halpin, L; Gonzalez-Pacheco, FR; Poglitsch, M; Salem, M; Schuster, M; Wysocki, J; Ye, M | 1 |
Busija, DW; Chappell, MC; Diz, DI; Gallagher, PE; Katakam, PV; Nautiyal, M; Tallant, EA | 1 |
Chu, Y; Faraci, FM; Heistad, DD; Miller, JD; Mitchell, IJ; Peña Silva, RA; Penninger, JM | 1 |
Bach, M; Benayahu, D; Berkutzki, T; Biton, I; Fridkin, M; Kohen, F; Limor, R; Marcus, Y; Nevo, N; Pappo, O; Sasson, K; Shechter, Y; Shefer, G; Stern, N | 1 |
Chang, JR; Chen, WJ; Qi, YF; Sui, YB; Tang, CS; Yin, XH; Yu, YR; Zhang, BH; Zhao, L | 1 |
Alzamora, AC; Campagnole-Santos, MJ; Cunha, TM; Lima, WG; Silva, ME; Souza Santos, RA | 1 |
Buczko, W; Kucharewicz, I; Matys, T; Pawlak, D; Pawlak, R | 1 |
Averill, DB; Chappell, MC; Ferrario, CM; Ishiyama, Y | 1 |
Averill, DB; Brosnihan, KB; Ferrario, CM; Gallagher, PE; Ishiyama, Y; Tallant, EA | 1 |
Angus, PW; Burrell, LM; Cooper, ME; Lew, RA; Paizis, G; Schembri, JM; Shaw, T; Smith, AI; Tikellis, C; Warner, FJ; Zuilli, A | 1 |
Bolton, TA; Grobe, JL; Katovich, MJ; Lingis, M; Machado, JM; Mecca, AP; Raizada, MK; Shenoy, V; Speth, RC | 1 |
Averill, DB; Chappell, MC; Ferrario, CM; Ganten, D; Trask, AJ | 1 |
Alenina, N; Bader, M; da Costa Gonçalves, AC; Fraga-Silva, RA; Leite, R; Pinheiro, SV; Reis, AB; Reis, FM; Santos, RA; Touyz, RM; Webb, RC | 1 |
Chappell, MC; Gallagher, PE; Groban, L; Pendergrass, KD; Pirro, NT; Yamaleyeva, LM | 1 |
De Mello, WC; Ferrario, CM; Jessup, JA | 1 |
Brosnihan, KB; Ferrario, CM; Gallagher, PE; Joyner, J; Merrill, DC; Neves, LA; Stovall, K; Valdés, G | 1 |
Chappell, MC; Ferrario, CM; Jessup, JA; Trask, AJ | 1 |
Deng, BP; Dong, B; Dong, QL; Feng, JB; Li, SY; Liu, B; Liu, CX; Pan, CM; Song, HD; Yang, YP; Yu, QT; Zhang, C; Zhang, MX; Zhang, Y; Zhao, YX; Zhu, L | 1 |
Brosnihan, KB; Chappell, MC; Ferrario, CM; Pendergrass, KD; Pirro, NT; Westwood, BM | 1 |
Ferrario, CM; Igase, M; Kohara, K; Miki, T; Nagai, T | 1 |
3 review(s) available for angiotensin ii, des-phe(8)- and Disease Models, Animal
Article | Year |
---|---|
Harnessing inflammation resolving-based therapeutic agents to treat pulmonary viral infections: What can the future offer to COVID-19?
Topics: Acetates; Angiotensin I; Animals; Annexin A1; Anti-Inflammatory Agents; COVID-19; COVID-19 Drug Treatment; Disease Models, Animal; Docosahexaenoic Acids; Humans; Hydrogen Peroxide; Inflammation; Inflammation Mediators; Mice; Orthomyxoviridae Infections; Oxidants; Peptide Fragments; Peptides; Phosphodiesterase 4 Inhibitors; Pneumonia, Viral; Rolipram; Vasodilator Agents | 2020 |
Cognitive benefits of angiotensin IV and angiotensin-(1-7): A systematic review of experimental studies.
Topics: Angiotensin I; Angiotensin II; Animals; Cognition Disorders; Databases, Bibliographic; Dementia; Disease Models, Animal; Humans; Memory, Short-Term; Peptide Fragments | 2018 |
Autonomic, locomotor and cardiac abnormalities in a mouse model of muscular dystrophy: targeting the renin-angiotensin system.
Topics: Angiotensin I; Angiotensin II Type 1 Receptor Blockers; Animals; Autonomic Nervous System; Cardiomyopathies; Disease Models, Animal; Genotype; Heart; Humans; Mice, Knockout; Motor Activity; Muscle, Skeletal; Muscular Dystrophies, Limb-Girdle; Myocardium; Peptide Fragments; Phenotype; Renin-Angiotensin System; Sarcoglycans; Ventricular Dysfunction, Left; Ventricular Function, Left | 2014 |
178 other study(ies) available for angiotensin ii, des-phe(8)- and Disease Models, Animal
Article | Year |
---|---|
Hemodynamic phenotyping of transgenic rats with ubiquitous expression of an angiotensin-(1-7)-producing fusion protein.
Topics: Angiotensin I; Animals; Arginine Vasopressin; Atrial Natriuretic Factor; Blood Flow Velocity; Blood Pressure; Cardiovascular System; Disease Models, Animal; Genotype; Glial Fibrillary Acidic Protein; Hemodynamics; Hypertension; Male; Peptide Fragments; Phenotype; Rats, Sprague-Dawley; Rats, Transgenic; Recombinant Fusion Proteins; Regional Blood Flow; Sympathetic Nervous System; Time Factors; Vascular Resistance | 2021 |
Angiotensin-(1-7)/MasR axis promotes migration of monocytes/macrophages with a regulatory phenotype to perform phagocytosis and efferocytosis.
Topics: Angiotensin I; Animals; Cells, Cultured; Disease Models, Animal; Humans; Inflammation; Macrophages; Male; MAP Kinase Signaling System; Mice; Mice, Inbred BALB C; Monocytes; Peptide Fragments; Peritonitis; Phagocytosis; Phenotype; Proto-Oncogene Mas; Receptors, CCR2 | 2022 |
Angiotensin Type 2 and Mas Receptor Activation Prevents Myocardial Fibrosis and Hypertrophy through the Reduction of Inflammatory Cell Infiltration and Local Sympathetic Activity in Angiotensin II-Dependent Hypertension.
Topics: Angiotensin I; Angiotensin II; Animals; Cardiomegaly; Disease Models, Animal; Fibrosis; Hypertension; Imidazoles; Injections, Intraperitoneal; Losartan; Male; Peptide Fragments; Proto-Oncogene Mas; Rats; Rats, Sprague-Dawley; Sulfonamides; Thiophenes; Tyrosine 3-Monooxygenase | 2021 |
Renin-Angiotensin System in Huntington's Disease: Evidence from Animal Models and Human Patients.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Disease Models, Animal; Humans; Huntington Disease; Mice; Peptide Fragments; Peptidyl-Dipeptidase A; Receptor, Angiotensin, Type 1; Renin-Angiotensin System | 2022 |
Attenuation of Smooth Muscle Cell Phenotypic Switching by Angiotensin 1-7 Protects against Thoracic Aortic Aneurysm.
Topics: Angiotensin I; Angiotensin II; Animals; Aortic Aneurysm, Thoracic; Disease Models, Animal; Male; Mice; Mice, Inbred C57BL; Myocytes, Smooth Muscle; Phenotype | 2022 |
Angiotensin-(1-7) improves tail skin heat loss and increases the survival of rats with polymicrobial sepsis.
Topics: Animals; Body Temperature Regulation; Disease Models, Animal; Male; Rats; Rats, Wistar; Sepsis; Tail | 2023 |
PNA6, a Lactosyl Analogue of Angiotensin-(1-7), Reverses Pain Induced in Murine Models of Inflammation, Chemotherapy-Induced Peripheral Neuropathy, and Metastatic Bone Disease.
Topics: Animals; Antineoplastic Agents; Bone Neoplasms; Breast Neoplasms; Cancer Pain; Disease Models, Animal; Female; Humans; Hyperalgesia; Mice; Mice, Inbred C57BL; Neuralgia; Oxaliplatin | 2023 |
Angiotensin-(1-7) suppresses airway inflammation and airway remodeling via inhibiting ATG5 in allergic asthma.
Topics: Airway Remodeling; Animals; Asthma; Autophagy-Related Protein 5; Disease Models, Animal; DNA, Complementary; Fibrosis; Humans; Inflammation; Interleukin-13; Lung; Mice; Mice, Inbred BALB C; Ovalbumin; RNA, Small Interfering; Transforming Growth Factor beta1 | 2023 |
Inhibition of smooth muscle cell death by Angiotensin 1-7 protects against abdominal aortic aneurysm.
Topics: Angiotensin II; Animals; Aorta, Abdominal; Aortic Aneurysm, Abdominal; Apoptosis Regulatory Proteins; Disease Models, Animal; Mice; Mice, Inbred C57BL; Myocytes, Smooth Muscle; Reactive Oxygen Species | 2023 |
Angiotensin-(1-7) mitigated angiotensin II-induced abdominal aortic aneurysms in apolipoprotein E-knockout mice.
Topics: Angiotensin I; Angiotensin II; Animals; Aortic Aneurysm, Abdominal; Disease Models, Animal; Mice; Mice, Inbred C57BL; Mice, Knockout, ApoE; Peptide Fragments | 2020 |
Ang-(1-7)/ MAS1 receptor axis inhibits allergic airway inflammation via blockade of Src-mediated EGFR transactivation in a murine model of asthma.
Topics: Angiotensin I; Animals; Asthma; Blotting, Western; Bronchoalveolar Lavage Fluid; Chemotaxis, Leukocyte; Disease Models, Animal; ErbB Receptors; Fluorescent Antibody Technique; Lung; Male; Mice; Mice, Inbred BALB C; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Respiratory Hypersensitivity; Signal Transduction; src-Family Kinases | 2019 |
Cyclic angiotensin-(1-7) contributes to rehabilitation of animal performance in a rat model of cerebral stroke.
Topics: Angiotensin I; Animals; Disease Models, Animal; Male; Peptide Fragments; Peptides, Cyclic; Rats; Rats, Sprague-Dawley; Recovery of Function; Stroke; Stroke Rehabilitation | 2020 |
Mas receptor is translocated to the nucleus upon agonist stimulation in brainstem neurons from spontaneously hypertensive rats but not normotensive rats.
Topics: Active Transport, Cell Nucleus; Angiotensin I; Animals; Animals, Newborn; Arachidonic Acid; Brain Stem; Cells, Cultured; Disease Models, Animal; Endocytosis; Extracellular Signal-Regulated MAP Kinases; Hypertension; Ligands; Neurons; Nitric Oxide; Peptide Fragments; Phosphorylation; Proto-Oncogene Mas; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Rats, Inbred SHR; Rats, Inbred WKY; Receptors, G-Protein-Coupled | 2020 |
Oral formulation angiotensin-(1-7) therapy attenuates pulmonary and systemic damage in mice with emphysema induced by elastase.
Topics: Administration, Oral; Angiotensin I; Animals; Disease Models, Animal; Homeostasis; Interleukin-1beta; Locomotion; Lung; Male; Mice; Mice, Inbred C57BL; Pancreatic Elastase; Peptide Fragments; Pulmonary Alveoli; Pulmonary Emphysema; Swine | 2020 |
Tsantan Sumtang attenuated chronic hypoxia-induced right ventricular structure remodeling and fibrosis by equilibrating local ACE-AngII-AT1R/ACE2-Ang1-7-Mas axis in rat.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Fibrosis; Hypertrophy, Right Ventricular; Hypoxia; Male; Medicine, Tibetan Traditional; Peptide Fragments; Peptidyl-Dipeptidase A; Plant Preparations; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Ventricular Remodeling | 2020 |
Effect of spinal angiotensin-converting enzyme 2 activation on the formalin-induced nociceptive response in mice.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Diminazene; Disease Models, Animal; Formaldehyde; Humans; Injections, Spinal; Male; Mice; Microglia; Neurons; Nociception; p38 Mitogen-Activated Protein Kinases; Pain; Peptide Fragments; Peptidyl-Dipeptidase A; Phosphorylation; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Spinal Cord | 2020 |
AVE0991, a nonpeptide angiotensin-(1-7) mimic, inhibits angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E knockout mice.
Topics: Angiotensin I; Angiotensin II; Animals; Aortic Aneurysm, Abdominal; Apolipoproteins E; Blood Pressure; Disease Models, Animal; Humans; Imidazoles; Immunohistochemistry; Lipids; Male; MAP Kinase Signaling System; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Mice; Mice, Knockout; Molecular Mimicry; Myocytes, Smooth Muscle; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Peptide Fragments | 2020 |
Angiotensin (1-7) through modulation of the NMDAR-nNOS-NO pathway and serotonergic metabolism exerts an anxiolytic-like effect in rats.
Topics: Angiotensin I; Animals; Anti-Anxiety Agents; Anxiety; Behavior, Animal; Disease Models, Animal; Hippocampus; Male; Monoamine Oxidase; Nitric Oxide; Nitric Oxide Synthase Type I; Peptide Fragments; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Serotonin; Signal Transduction | 2020 |
Treatment with inhaled formulation of angiotensin-(1-7) reverses inflammation and pulmonary remodeling in a model of chronic asthma.
Topics: Administration, Inhalation; Airway Remodeling; Angiotensin I; Animals; Asthma; Biomarkers; Cytokines; Disease Models, Animal; Immunoglobulin E; Lung; Matrix Metalloproteinases; Mice; Ovalbumin; Peptide Fragments; Vasodilator Agents | 2020 |
Antiepileptic effects of long-term intracerebroventricular infusion of angiotensin-(1-7) in an animal model of temporal lobe epilepsy.
Topics: Angiotensin I; Animals; Anticonvulsants; Anxiety; Disease Models, Animal; Elevated Plus Maze Test; Epilepsy, Temporal Lobe; Hippocampus; Infusions, Intraventricular; Male; Motor Activity; Peptide Fragments; Photoperiod; Rats, Wistar; Weight Gain | 2020 |
Different reactive species modulate the hypotensive effect triggered by angiotensins at CVLM of 2K1C hypertensive rats.
Topics: Angiotensin I; Angiotensin II; Animals; Antihypertensive Agents; Disease Models, Animal; Heart Rate; Hypertension, Renovascular; Male; Medulla Oblongata; Peptide Fragments; Rats; Reactive Oxygen Species; Renin-Angiotensin System; Vasoconstrictor Agents | 2020 |
Activation of angiotensin II type-2 receptor protects against cigarette smoke-induced COPD.
Topics: Airway Remodeling; Angiotensin I; Angiotensin II; Animals; Anti-Inflammatory Agents; Antioxidants; Cytokines; Disease Models, Animal; Female; Imidazoles; Inflammation Mediators; Lung; Macrophages, Alveolar; Mice, Inbred BALB C; Neutrophils; Oxidative Stress; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Pulmonary Disease, Chronic Obstructive; Pulmonary Emphysema; Receptor, Angiotensin, Type 2; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Signal Transduction; Smoke; Sulfonamides; Thiophenes; Tobacco Products | 2020 |
The beneficial effects of angiotensin-converting enzyme II (ACE2) activator in pulmonary hypertension secondary to left ventricular dysfunction.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Diminazene; Disease Models, Animal; Drug Evaluation, Preclinical; Enzyme Activators; Humans; Hypertension, Pulmonary; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Ventricular Dysfunction, Left | 2020 |
Angiotensin 1-7 protects against ventilator-induced diaphragm dysfunction.
Topics: Angiotensin I; Animals; Diaphragm; Disease Models, Animal; Female; Humans; Infusions, Intravenous; Muscle Contraction; Muscle Weakness; Muscular Disorders, Atrophic; Oxidative Stress; Peptide Fragments; Rats; Respiration, Artificial | 2021 |
Angiotensin (1-7) Alleviates Postresuscitation Myocardial Dysfunction by Suppressing Oxidative Stress Through the Phosphoinositide 3-Kinase, Protein Kinase B, and Endothelial Nitric Oxide Synthase Signaling Pathway.
Topics: Angiotensin I; Animals; Apoptosis; Cardiopulmonary Resuscitation; Cells, Cultured; Disease Models, Animal; Heart Arrest; Heart Diseases; Male; Myocytes, Cardiac; Nitric Oxide Synthase Type III; Oxidative Stress; Peptide Fragments; Phosphatidylinositol 3-Kinase; Proto-Oncogene Mas; Proto-Oncogene Proteins c-akt; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Return of Spontaneous Circulation; Signal Transduction; Ventricular Function, Left; Ventricular Pressure | 2021 |
Angiotensin (1-7) Attenuates the Nociceptive Behavior Induced by Substance P and NMDA via Spinal MAS1.
Topics: Angiotensin I; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Humans; Injections, Spinal; Male; Mice; N-Methylaspartate; Nociception; Nociceptive Pain; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Receptors, N-Methyl-D-Aspartate; Receptors, Neurokinin-1; Spinal Cord; Substance P | 2021 |
Diminazene Aceturate Stabilizes Atherosclerotic Plaque and Attenuates Hepatic Steatosis in apoE-Knockout Mice by Influencing Macrophages Polarization and Taurine Biosynthesis.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Apolipoproteins E; Atherosclerosis; Diet, High-Fat; Diminazene; Disease Models, Animal; Fatty Liver; Female; Gene Expression Regulation; Humans; Liver; Macrophage Activation; Macrophages; Mesenteric Arteries; Mice; Mice, Inbred C57BL; Mice, Knockout, ApoE; Peptide Fragments; Plaque, Atherosclerotic; Taurine; THP-1 Cells | 2021 |
Ang(1-7) exerts Nrf2-mediated neuroprotection against amyloid beta-induced cognitive deficits in rodents.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Angiotensin I; Animals; Behavior, Animal; Cognitive Dysfunction; Disease Models, Animal; Heme Oxygenase (Decyclizing); Hippocampus; Infusions, Intraventricular; Male; Maze Learning; Mitochondria; Neuroprotective Agents; NF-E2-Related Factor 2; Peptide Fragments; Rats; Rats, Wistar; Signal Transduction; Treatment Outcome | 2021 |
Angiotensin-(1-7)/Mas receptor modulates anti-inflammatory effects of exercise training in a model of chronic allergic lung inflammation.
Topics: Angiotensin I; Animals; Asthma; Disease Models, Animal; Exercise Therapy; Male; Mice, Inbred BALB C; Peptide Fragments; Pneumonia | 2021 |
Resveratrol Confers Protection Against Ischemia/Reperfusion Injury by Increase of Angiotensin (1-7) Expression in a Rat Model of Myocardial Hypertrophy.
Topics: Angiotensin I; Animals; Disease Models, Animal; Hypertrophy, Left Ventricular; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Peptide Fragments; Proto-Oncogene Mas; Rats, Wistar; Resveratrol; Tachycardia, Ventricular; Ventricular Fibrillation | 2021 |
Angiotensin-(1-7)-mediated Mas1 receptor/NF-κB-p65 signaling is involved in a cigarette smoke-induced chronic obstructive pulmonary disease mouse model.
Topics: Angiotensin I; Animals; Bronchoalveolar Lavage Fluid; Chemokine CXCL1; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Injections, Subcutaneous; Interleukin-6; Lung; Male; Mice; Mice, Inbred C57BL; NF-KappaB Inhibitor alpha; Nicotiana; Peptide Fragments; Phosphorylation; Proto-Oncogene Mas; Proto-Oncogene Proteins; Pulmonary Disease, Chronic Obstructive; Pulmonary Fibrosis; Receptors, G-Protein-Coupled; Signal Transduction; Smoke; Transcription Factor RelA; Tumor Necrosis Factor-alpha | 2018 |
DKK3 overexpression attenuates cardiac hypertrophy and fibrosis in an angiotensin-perfused animal model by regulating the ADAM17/ACE2 and GSK-3β/β-catenin pathways.
Topics: ADAM17 Protein; Adaptor Proteins, Signal Transducing; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Animals, Newborn; Apoptosis; beta Catenin; Cardiomegaly; Cell Proliferation; Disease Models, Animal; Fibroblasts; Fibrosis; Glycogen Synthase Kinase 3 beta; Inflammation; Intercellular Signaling Peptides and Proteins; Matrix Metalloproteinases; Mice, Inbred C57BL; Peptide Fragments; Peptidyl-Dipeptidase A; Perfusion; Phosphorylation; Signal Transduction; Smad3 Protein; Transforming Growth Factor beta1 | 2018 |
Modulating Role of Ang1-7 in Control of Blood Pressure and Renal Function in AngII-infused Hypertensive Rats.
Topics: Angiotensin I; Angiotensin II; Animals; Antihypertensive Agents; Blood Pressure; Disease Models, Animal; Hypertension; Male; Natriuresis; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptors, G-Protein-Coupled; Signal Transduction; Urodynamics | 2018 |
Angiotensin-(1-7) Promotes Resolution of Eosinophilic Inflammation in an Experimental Model of Asthma.
Topics: Angiotensin I; Animals; Apoptosis; Asthma; Biomarkers; Bronchoalveolar Lavage Fluid; Caspase 3; Cell Survival; Disease Models, Animal; Eosinophils; Fluorescent Antibody Technique; GATA3 Transcription Factor; Leukocyte Count; Male; Mice; NF-kappa B; NF-KappaB Inhibitor alpha; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled | 2018 |
Lipoxin A
Topics: Acute Lung Injury; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Cell Line, Tumor; Disease Models, Animal; Humans; Imidazoles; Leucine; Lipopolysaccharides; Lipoxins; Male; Mice; NF-kappa B; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Signal Transduction | 2018 |
ACE2 activator diminazene aceturate reduces adiposity but preserves lean mass in young and old rats.
Topics: Adiposity; Age Factors; Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Diminazene; Disease Models, Animal; Gene Expression; Male; Obesity; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Inbred F344; Renin-Angiotensin System | 2018 |
Tanshinone IIA attenuates paraquat‑induced acute lung injury by modulating angiotensin‑converting enzyme 2/angiotensin‑(1‑7) in rats.
Topics: Abietanes; Acute Lung Injury; Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Anti-Inflammatory Agents, Non-Steroidal; Biomarkers; Biopsy; Bronchoalveolar Lavage Fluid; Disease Models, Animal; Gene Expression; Immunohistochemistry; L-Lactate Dehydrogenase; Male; Neutrophil Infiltration; Paraquat; Peptide Fragments; Peptidyl-Dipeptidase A; Rats | 2018 |
Angiotensin-converting enzyme 2 deficiency accelerates and angiotensin 1-7 restores age-related muscle weakness in mice.
Topics: Age Factors; Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Biomarkers; Disease Models, Animal; Gene Expression Profiling; Glucose Tolerance Test; Mice; Mice, Knockout; Muscle Weakness; Muscle, Skeletal; Oxygen Consumption; Peptide Fragments; Peptidyl-Dipeptidase A; Physical Conditioning, Animal; Transcriptome | 2018 |
Angiotensin (1-7) inhibits arecoline-induced migration and collagen synthesis in human oral myofibroblasts via inhibiting NLRP3 inflammasome activation.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Anti-Inflammatory Agents; Antioxidants; Arecoline; Cell Movement; Cells, Cultured; Collagen; Disease Models, Animal; Humans; Male; Myofibroblasts; NADPH Oxidase 4; NLR Family, Pyrin Domain-Containing 3 Protein; Oral Submucous Fibrosis; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Pyroptosis; Rats, Sprague-Dawley; Reactive Oxygen Species; Receptor, Angiotensin, Type 1; Receptors, G-Protein-Coupled; Signal Transduction | 2019 |
Angiotensin-(1-7) attenuates organ injury and mortality in rats with polymicrobial sepsis.
Topics: Angiotensin I; Animals; Apoptosis; Biomarkers; Coinfection; Disease Models, Animal; Interleukin-6; Organ Dysfunction Scores; Oxidative Stress; Peptide Fragments; Rats; Rats, Wistar; Sepsis; Statistics, Nonparametric; Superoxides; Tissue Survival | 2018 |
Comparison of Candesartan and Angiotensin-(1-7) Combination to Mito-TEMPO Treatment for Normalizing Blood Pressure and Sympathovagal Balance in (mREN2)27 Rats.
Topics: Angiotensin I; Angiotensin II Type 1 Receptor Blockers; Animals; Antihypertensive Agents; Arterial Pressure; Baroreflex; Benzimidazoles; Biphenyl Compounds; Brain; Disease Models, Animal; Drug Combinations; Free Radical Scavengers; Heart; Heart Rate; Hypertension; Male; Mitochondria; Organophosphorus Compounds; Peptide Fragments; Piperidines; Rats, Transgenic; Reactive Oxygen Species; Renin; Sympathetic Nervous System; Tetrazoles; Vagus Nerve | 2019 |
Molecular and Cellular Effect of Angiotensin 1-7 on Hypertensive Kidney Disease.
Topics: Angiotensin I; Animals; Antihypertensive Agents; Blood Pressure; Blotting, Western; Disease Models, Animal; Fibrosis; Gene Expression Regulation; Hypertension, Renal; Kidney; Lymphokines; Male; Nephritis; Oxidative Stress; Peptide Fragments; Platelet-Derived Growth Factor; Rats; Rats, Sprague-Dawley; RNA; Tissue Inhibitor of Metalloproteinases; Vascular Endothelial Growth Factor D | 2019 |
Assessing the effects of Ang-(1-7) therapy following transient middle cerebral artery occlusion.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Blood-Brain Barrier; Contrast Media; Disease Models, Animal; Gene Expression Regulation; Humans; Infarction, Middle Cerebral Artery; Inflammation; Magnetic Resonance Imaging; Microglia; Middle Cerebral Artery; NADPH Oxidase 1; Neuroprotective Agents; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Rats; Renin-Angiotensin System; Reperfusion; RNA, Messenger; Stroke | 2019 |
Chronic Angiotensin 1-7 Infusion Prevents Angiotensin-II-Induced Cognitive Dysfunction and Skeletal Muscle Injury in a Mouse Model of Alzheimer's Disease.
Topics: Alzheimer Disease; Angiotensin I; Angiotensin II; Animals; Blood Pressure; Body Weight; Cerebrovascular Circulation; Cognitive Dysfunction; Disease Models, Animal; Hippocampus; Maze Learning; Mice; Muscle, Skeletal; Peptide Fragments; Rotarod Performance Test | 2019 |
Sini decoction ameliorates sepsis-induced acute lung injury via regulating ACE2-Ang (1-7)-Mas axis and inhibiting the MAPK signaling pathway.
Topics: Acute Lung Injury; Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Bronchoalveolar Lavage Fluid; Disease Models, Animal; Drugs, Chinese Herbal; Human Umbilical Vein Endothelial Cells; Humans; Lung; Male; MAP Kinase Signaling System; Mice, Inbred ICR; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Sepsis | 2019 |
Targeting the RAS axis alleviates silicotic fibrosis and Ang II-induced myofibroblast differentiation via inhibition of the hedgehog signaling pathway.
Topics: Adult; Aged; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Anthracosis; Captopril; Cell Differentiation; Cell Line; Collagen; Disease Models, Animal; Female; Hedgehog Proteins; Humans; Lung; Male; Middle Aged; Myofibroblasts; Oligopeptides; Peptide Fragments; Pulmonary Fibrosis; Rats, Wistar; Renin-Angiotensin System; Signal Transduction; Silicosis | 2019 |
Effect of preventive or therapeutic treatment with angiotensin 1-7 in a model of bleomycin-induced lung fibrosis in mice.
Topics: Angiotensin I; Animals; Bleomycin; Disease Models, Animal; Leukocytes, Mononuclear; Lung; Male; Mice, Inbred C57BL; Peptide Fragments; Pulmonary Fibrosis; Survival Analysis | 2019 |
Protective Effect of Angiotensin (1-7) on Silicotic Fibrosis in Rats.
Topics: Actins; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Animals, Newborn; Cell Differentiation; Cells, Cultured; Collagen Type I; Disease Models, Animal; Lung; Myofibroblasts; Peptide Fragments; Peptidyl-Dipeptidase A; Rats, Wistar; Silicosis | 2019 |
Addition of cyclic angiotensin-(1-7) to angiotensin-converting enzyme inhibitor therapy has a positive add-on effect in experimental diabetic nephropathy.
Topics: Alanine; Angiotensin I; Angiotensin-Converting Enzyme Inhibitors; Animals; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Disease Models, Animal; Drug Therapy, Combination; Half-Life; Humans; Kidney Glomerulus; Lisinopril; Male; Mice; Mice, Transgenic; Microscopy, Electron, Transmission; Peptide Fragments; Peptides, Cyclic; Proteinuria; Sulfides | 2019 |
Sex-related differences in the intratubular renin-angiotensin system in two-kidney, one-clip hypertensive rats.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Constriction; Disease Models, Animal; Estrogens; Female; Hypertension; Hypertrophy, Left Ventricular; Kidney Tubules; Macrophages; Male; Ovariectomy; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptors, G-Protein-Coupled; Renal Artery; Renin-Angiotensin System; Sex Factors; Signal Transduction | 2019 |
Angiotensin-(1-7) in the rostral ventrolateral medulla modulates enhanced cardiac sympathetic afferent reflex and sympathetic activation in renovascular hypertensive rats.
Topics: Afferent Pathways; Angiotensin I; Animals; Antihypertensive Agents; Arterial Pressure; Autonomic Pathways; Disease Models, Animal; Hypertension, Renovascular; Male; Medulla Oblongata; Paraventricular Hypothalamic Nucleus; Peptide Fragments; Rats; Rats, Sprague-Dawley; Reflex; Sympathetic Nervous System | 2013 |
Predominance of AT(1) blockade over mas-mediated angiotensin-(1-7) mechanisms in the regulation of blood pressure and renin-angiotensin system in mRen2.Lewis rats.
Topics: Aldosterone; Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Antihypertensive Agents; Blood Pressure; Disease Models, Animal; Hypertension; Imidazoles; Male; Olmesartan Medoxomil; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Inbred Lew; Rats, Transgenic; Receptor, Angiotensin, Type 1; Receptors, G-Protein-Coupled; Renin; Renin-Angiotensin System; Tetrazoles | 2013 |
Anti-inflammatory effects of angiotensin-(1-7) in ischemic stroke.
Topics: Angiotensin I; Animals; Anti-Inflammatory Agents, Non-Steroidal; Brain Ischemia; Cells, Cultured; Cerebral Cortex; Disease Models, Animal; Gene Expression Regulation; Male; Mice; Mice, Inbred Strains; Mice, Knockout; Microglia; Nerve Tissue Proteins; Neuroprotective Agents; Nitric Oxide; Nitric Oxide Synthase Type II; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Specific Pathogen-Free Organisms; Stroke | 2013 |
Ang(1-7) treatment attenuates β-cell dysfunction by improving pancreatic microcirculation in a rat model of Type 2 diabetes.
Topics: Angiotensin I; Angiotensin II; Animals; Apoptosis; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models, Animal; Insulin; Insulin Secretion; Islets of Langerhans; Male; Microcirculation; Nitric Oxide; Nitric Oxide Synthase Type III; Pancreas; Peptide Fragments; Rats; Rats, Wistar | 2013 |
ACE2 activation confers endothelial protection and attenuates neointimal lesions in prevention of severe pulmonary arterial hypertension in rats.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Arterial Pressure; Cytoprotection; Disease Models, Animal; Endothelium, Vascular; Enzyme Activation; Enzyme Activators; Familial Primary Pulmonary Hypertension; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Monocrotaline; Naphthalenes; Neointima; Peptide Fragments; Peptidyl-Dipeptidase A; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Renin-Angiotensin System; Resorcinols; Severity of Illness Index; Time Factors; Vasodilation | 2013 |
Antinociceptive response in transgenic mice expressing rat tonin.
Topics: Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Behavior, Animal; Disease Models, Animal; Losartan; Male; Mice; Mice, Transgenic; Nociception; Nociceptive Pain; Pain Measurement; Peptide Fragments; Rats; Receptors, G-Protein-Coupled; Tissue Kallikreins | 2013 |
Mechanisms of the anti-inflammatory actions of the angiotensin type 1 receptor antagonist losartan in experimental models of arthritis.
Topics: Angiotensin I; Angiotensin II Type 1 Receptor Blockers; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arthritis, Experimental; Arthritis, Rheumatoid; Cell Adhesion; Chemokine CXCL1; Disease Models, Animal; Female; Hyperalgesia; Inflammation; Interleukin-1beta; Leukocyte Rolling; Losartan; Male; Mice; Mice, Inbred C57BL; Neutrophil Infiltration; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptors, G-Protein-Coupled; Tumor Necrosis Factor-alpha | 2013 |
Beneficial effects of the activation of the angiotensin-(1-7) MAS receptor in a murine model of adriamycin-induced nephropathy.
Topics: Angiotensin I; Angiotensin II Type 1 Receptor Blockers; Animals; Disease Models, Animal; Doxorubicin; Gene Expression Regulation; Humans; Imidazoles; Kidney Diseases; Kidney Glomerulus; Kidney Tubules; Losartan; Mice; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptor, Angiotensin, Type 1; Receptors, G-Protein-Coupled; RNA, Messenger; Time Factors | 2013 |
The renin angiotensin system regulates Kupffer cells in colorectal liver metastases.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Captopril; Colorectal Neoplasms; Disease Models, Animal; Gadolinium; Kupffer Cells; Liver Neoplasms; Macrophages; Male; Mice; Mice, Inbred CBA; Peptide Fragments; Renin-Angiotensin System | 2013 |
Central endogenous angiotensin-(1-7) protects against aldosterone/NaCl-induced hypertension in female rats.
Topics: Aldosterone; Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Disease Models, Animal; Female; Hypertension; NADPH Oxidases; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Receptors, Estrogen; Receptors, G-Protein-Coupled; Renin-Angiotensin System; RNA, Messenger; Sex Factors; Sodium Chloride | 2013 |
Primacy of angiotensin converting enzyme in angiotensin-(1-12) metabolism.
Topics: Angiotensin I; Angiotensin-Converting Enzyme Inhibitors; Angiotensinogen; Animals; Blood Pressure; Chymases; Disease Models, Animal; Hypertension; Infusions, Intravenous; Lisinopril; Male; Oligopeptides; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Inbred SHR; Rats, Inbred WKY | 2013 |
Chronic AT2 receptor activation increases renal ACE2 activity, attenuates AT1 receptor function and blood pressure in obese Zucker rats.
Topics: Angiotensin I; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Antihypertensive Agents; Blood Pressure; Cell Line; Disease Models, Animal; Glomerular Filtration Rate; Humans; Hypertension; Kidney Cortex; Male; Natriuresis; Obesity; Oligopeptides; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Zucker; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptors, G-Protein-Coupled; Renin; Renin-Angiotensin System; Time Factors; Up-Regulation | 2013 |
Activation of angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis attenuates the cardiac reactivity to acute emotional stress.
Topics: Adrenergic beta-Agonists; Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Arterial Pressure; Cells, Cultured; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Activators; Heart Rate; Hemodynamics; Hypothalamus; Injections, Intravenous; Injections, Intraventricular; Male; Myocytes, Cardiac; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; Signal Transduction; Stress, Psychological; Sympathetic Nervous System; Tachycardia | 2013 |
AVE 0991, a non-peptide mimic of angiotensin-(1-7) effects, attenuates pulmonary remodelling in a model of chronic asthma.
Topics: Airway Remodeling; Angiotensin I; Angiotensin II; Animals; Anti-Asthmatic Agents; Asthma; Bronchoalveolar Lavage Fluid; Bronchoconstriction; Chronic Disease; Cytokines; Disease Models, Animal; Hypertrophy, Right Ventricular; Imidazoles; Lung; Male; Mice; Mice, Inbred BALB C; Molecular Mimicry; Ovalbumin; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Pulmonary Artery; Pulmonary Veins; Receptors, G-Protein-Coupled; Time Factors | 2013 |
An oral formulation of angiotensin-(1-7) reverses corpus cavernosum damages induced by hypercholesterolemia.
Topics: Administration, Oral; Angiotensin I; Animals; Apolipoproteins E; Collagen; Cyclodextrins; Disease Models, Animal; Endothelium, Vascular; Fibrosis; Hypercholesterolemia; Impotence, Vasculogenic; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Nitric Oxide; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type III; Oxidative Stress; Penile Erection; Penis; Peptide Fragments; Phosphoproteins; Proto-Oncogene Mas; Proto-Oncogene Proteins; Reactive Oxygen Species; Receptor, Angiotensin, Type 1; Receptors, G-Protein-Coupled; Vasodilation; Vasodilator Agents | 2013 |
Angiotensin-(1-7) attenuates lung fibrosis by way of Mas receptor in acute lung injury.
Topics: Acute Lung Injury; Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Disease Models, Animal; Lipopolysaccharides; Losartan; Male; Mice; Mice, Inbred C57BL; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Pulmonary Fibrosis; Receptors, G-Protein-Coupled; Respiratory Distress Syndrome; Vasodilator Agents | 2013 |
Protective effects of angiotensin-(1-7) administrated with an angiotensin-receptor blocker in a rat model of chronic kidney disease.
Topics: Angiopoietins; Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Disease Models, Animal; Fibronectins; Losartan; Male; Nephrectomy; Peptide Fragments; Plasminogen Activator Inhibitor 1; Rats, Sprague-Dawley; Receptor, TIE-2; Renal Insufficiency, Chronic; Systole | 2013 |
Angiotensin-(1-7) attenuates the anxiety and depression-like behaviors in transgenic rats with low brain angiotensinogen.
Topics: Angiotensin I; Angiotensinogen; Animals; Anxiety; Brain; Depression; Disease Models, Animal; Drug Administration Routes; Fluoxetine; Male; Maze Learning; Peptide Fragments; Psychotropic Drugs; Rats; Rats, Sprague-Dawley; Rats, Transgenic; RNA, Antisense; Selective Serotonin Reuptake Inhibitors; Swimming | 2013 |
Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-β signalling.
Topics: Angiotensin I; Animals; Disease Models, Animal; Extracellular Matrix; Fibroblasts; Fibrosis; Humans; Male; Mice; Mice, Inbred mdx; Mice, Knockout; MicroRNAs; Muscle Strength; Muscle, Skeletal; Muscular Dystrophy, Duchenne; Peptide Fragments; Receptors, Cell Surface; Signal Transduction; Transforming Growth Factor beta | 2014 |
Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-κB pathway.
Topics: Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Apoptosis; bcl-X Protein; Bleomycin; Cells, Cultured; Collagen Type I; Disease Models, Animal; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Fibroblasts; Humans; Infusions, Subcutaneous; Lung; Male; MAP Kinase Signaling System; NF-kappa B; Peptide Fragments; Peptidyl-Dipeptidase A; Phosphorylation; Pneumonia; Protein Kinase Inhibitors; Proto-Oncogene Mas; Proto-Oncogene Proteins; Pulmonary Fibrosis; Rats; Rats, Wistar; Receptors, G-Protein-Coupled | 2014 |
Angiotensin-(1-7) modulates renal vascular resistance through inhibition of p38 mitogen-activated protein kinase in apolipoprotein E-deficient mice.
Topics: Angiotensin I; Angiotensin II; Animals; Apolipoproteins E; Atherosclerosis; Blood Pressure; Disease Models, Animal; Female; Hypertension, Renal; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Naphthalenes; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Peptide Fragments; Protein Kinase Inhibitors; Proto-Oncogene Mas; Proto-Oncogene Proteins; Pyrazoles; Receptors, G-Protein-Coupled; Renal Circulation; Vascular Resistance | 2014 |
Possible role of angiotensin-converting enzyme 2 and activation of angiotensin II type 2 receptor by angiotensin-(1-7) in improvement of vascular remodeling by angiotensin II type 1 receptor blockade.
Topics: Angiotensin I; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Disease Models, Animal; Gene Expression Regulation; Immunohistochemistry; Mice; Mice, Inbred C57BL; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Real-Time Polymerase Chain Reaction; Receptor, Angiotensin, Type 2; RNA; Vascular Resistance; Vasodilator Agents | 2014 |
Angiotensin-converting enzyme (ACE and ACE2) imbalance correlates with the severity of cerulein-induced acute pancreatitis in mice.
Topics: Acute Disease; Amylases; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Biomarkers; Ceruletide; Disease Models, Animal; Genotype; Inflammation Mediators; Male; Mice, Inbred C57BL; Mice, Knockout; Necrosis; Pancreas; Pancreatitis; Peptide Fragments; Peptidyl-Dipeptidase A; Phenotype; Severity of Illness Index; Time Factors | 2014 |
Autocrine and paracrine function of Angiotensin 1-7 in tissue repair during hypertension.
Topics: Aldosterone; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Apoptosis; Autocrine Communication; Disease Models, Animal; Fibrosis; Hypertension; Kidney; Male; Myocardium; Paracrine Communication; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Signal Transduction; Ventricular Remodeling | 2014 |
Angiotensin-converting enzyme 2-independent action of presumed angiotensin-converting enzyme 2 activators: studies in vivo, ex vivo, and in vitro.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Diminazene; Disease Models, Animal; Glutamyl Aminopeptidase; Hypertension; Imidazoles; In Vitro Techniques; Kidney; Leucine; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Xanthones | 2014 |
Novel role of aminopeptidase-A in angiotensin-(1-7) metabolism post myocardial infarction.
Topics: Angiotensin I; Angiotensin II; Angiotensin III; Angiotensin-Converting Enzyme 2; Animals; Disease Models, Animal; Enzyme Inhibitors; Glutamyl Aminopeptidase; Kinetics; Male; Mice; Mice, Inbred C57BL; Myocardial Infarction; Myocardium; Peptide Fragments; Peptidyl-Dipeptidase A; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Substrate Specificity; Tandem Mass Spectrometry; Ventricular Remodeling | 2014 |
Treatment with Angiotensin-(1-7) reduces inflammation in carotid atherosclerotic plaques.
Topics: Administration, Oral; Angiotensin I; Animals; Anti-Inflammatory Agents; Apolipoproteins E; Carotid Arteries; Case-Control Studies; Disease Models, Animal; Humans; Inflammation; Mice; Mice, Inbred C57BL; Mice, Knockout; Peptide Fragments; Plaque, Atherosclerotic | 2014 |
Increasing angiotensin-(1-7) levels in the brain attenuates metabolic syndrome-related risks in fructose-fed rats.
Topics: Angiotensin I; Animals; Baroreflex; Blood Glucose; Blood Pressure; Body Weight; Brain; Dietary Carbohydrates; Disease Models, Animal; Fructose; Glycogen; Infusions, Intraventricular; Insulin; Metabolic Syndrome; Peptide Fragments; Rats; Rats, Sprague-Dawley; Risk Factors | 2014 |
Ulinastatin activates the renin-angiotensin system to ameliorate the pathophysiology of severe acute pancreatitis.
Topics: Acute Disease; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Ceruletide; Disease Models, Animal; Gene Expression; Glycoproteins; Lipopolysaccharides; Mice, Inbred C57BL; Molecular Targeted Therapy; Pancreatitis; Peptide Fragments; Peptidyl-Dipeptidase A; Prospective Studies; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Severity of Illness Index | 2014 |
Female spontaneously hypertensive rats are more dependent on ANG (1-7) to mediate effects of low-dose AT1 receptor blockade than males.
Topics: Angiotensin I; Angiotensin II; Angiotensin Receptor Antagonists; Animals; Benzimidazoles; Biphenyl Compounds; Blood Pressure; Cell Adhesion Molecules; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Hypertension; Male; Membrane Proteins; Peptide Fragments; Rats; Rats, Inbred SHR; Receptor, Angiotensin, Type 1; Sex Factors; Tetrazoles | 2014 |
Angiotensin-(1-7) improves cognitive function in rats with chronic cerebral hypoperfusion.
Topics: Angiotensin I; Animals; Astrocytes; Blood Pressure; Brain Ischemia; Carotid Artery, Common; Cell Death; Cell Proliferation; Chronic Disease; Cognition Disorders; Disease Models, Animal; Hippocampus; Male; Maze Learning; Neurons; Neuroprotective Agents; Nitric Oxide; Peptide Fragments; Rats, Wistar | 2014 |
Estrogen regulation of the brain renin-angiotensin system in protection against angiotensin II-induced sensitization of hypertension.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Brain; Disease Models, Animal; Estradiol; Estrogen Replacement Therapy; Female; Gene Expression Regulation; Hypertension; Infusions, Intraventricular; Male; Ovariectomy; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptors, G-Protein-Coupled; Renin-Angiotensin System; RNA, Messenger; Sex Factors; Telemetry; Time Factors | 2014 |
Reduction of angiotensin A and alamandine vasoactivity in the rabbit model of atherogenesis: differential effects of alamandine and Ang(1-7).
Topics: Acetylcholine; Angiotensin I; Angiotensins; Animals; Aorta, Abdominal; Aorta, Thoracic; Atherosclerosis; Carotid Arteries; Disease Models, Animal; Dose-Response Relationship, Drug; Iliac Artery; Male; Nitric Oxide Synthase Type III; Oligopeptides; Peptide Fragments; Phenylephrine; Rabbits; Receptors, G-Protein-Coupled; Renal Artery; Vasoconstriction; Vasodilation | 2014 |
Effects of the angiotensin-(1-7)/Mas/PI3K/Akt/nitric oxide axis and the possible role of atrial natriuretic peptide in an acute atrial tachycardia canine model.
Topics: Acute Disease; Angiotensin I; Animals; Atrial Fibrillation; Atrial Natriuretic Factor; Disease Models, Animal; Dogs; Heart Atria; Hemodynamics; Nitric Oxide; Peptide Fragments; Phosphatidylinositol 3-Kinases; Proto-Oncogene Mas; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Receptors, G-Protein-Coupled; Refractory Period, Electrophysiological; Signal Transduction; Tachycardia; Time Factors | 2015 |
Combined suppression of the intrarenal and circulating vasoconstrictor renin-ACE-ANG II axis and augmentation of the vasodilator ACE2-ANG 1-7-Mas axis attenuates the systemic hypertension in Ren-2 transgenic rats exposed to chronic hypoxia.
Topics: Age Factors; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Disease Models, Animal; Hypertension; Hypoxia; Kidney; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats, Sprague-Dawley; Rats, Transgenic; Receptors, G-Protein-Coupled; Renin; Renin-Angiotensin System; Signal Transduction; Vasoconstriction; Vasodilation | 2015 |
Intrapulmonary activation of the angiotensin-converting enzyme type 2/angiotensin 1-7/G-protein-coupled Mas receptor axis attenuates pulmonary hypertension in Ren-2 transgenic rats exposed to chronic hypoxia.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Arterial Pressure; Disease Models, Animal; Hypertension, Pulmonary; Hypoxia; Lung; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats, Sprague-Dawley; Rats, Transgenic; Receptor, Angiotensin, Type 1; Receptors, G-Protein-Coupled; Renin; Renin-Angiotensin System; Signal Transduction; Vasoconstriction; Vasodilation | 2015 |
Origin of the Y chromosome influences intrarenal vascular responsiveness to angiotensin I and angiotensin (1-7) in stroke-prone spontaneously hypertensive rats.
Topics: Angiotensin I; Animals; Blood Pressure; Disease Models, Animal; Hypertension; Male; Peptide Fragments; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Renal Artery; Vasodilation; Vasodilator Agents; Y Chromosome | 2014 |
Oral delivery of Angiotensin-converting enzyme 2 and Angiotensin-(1-7) bioencapsulated in plant cells attenuates pulmonary hypertension.
Topics: Administration, Oral; Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Antihypertensive Agents; Blood Pressure; Chloroplasts; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Carriers; Drug Therapy, Combination; Hypertension, Pulmonary; Male; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Sprague-Dawley; Renin-Angiotensin System | 2014 |
Oral delivery of ACE2/Ang-(1-7) bioencapsulated in plant cells protects against experimental uveitis and autoimmune uveoretinitis.
Topics: Administration, Oral; Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Chloroplasts; Disease Models, Animal; Humans; Mice; Mice, Inbred C57BL; Peptide Fragments; Peptidyl-Dipeptidase A; Plants, Genetically Modified; Retinal Vasculitis; Retinitis; Uveitis | 2014 |
The angiotensin-(1-7)/Mas axis reduces myonuclear apoptosis during recovery from angiotensin II-induced skeletal muscle atrophy in mice.
Topics: Angiotensin I; Angiotensin II; Animals; Apoptosis; Disease Models, Animal; Immunoblotting; In Situ Nick-End Labeling; Male; Mice; Mice, Inbred C57BL; Muscle, Skeletal; Muscular Atrophy; Peptide Fragments; Polymerase Chain Reaction; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled | 2015 |
Changes in levels of angiotensin II and its receptors in a model of inverted stress-induced cardiomyopathy.
Topics: Angiotensin I; Angiotensin II; Animals; Cardiomyopathies; Disease Models, Animal; Female; Myocardium; Peptide Fragments; Rabbits; Receptors, Angiotensin; Renin-Angiotensin System; Stress, Physiological | 2014 |
Chronic treatment with Ang-(1-7) reverses abnormal reactivity in the corpus cavernosum and normalizes diabetes-induced changes in the protein levels of ACE, ACE2, ROCK1, ROCK2 and omega-hydroxylase in a rat model of type 1 diabetes.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Blood Glucose; Body Weight; Cytochrome P-450 CYP4A; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Disease Models, Animal; Erectile Dysfunction; Male; Penis; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; rho-Associated Kinases; Streptozocin | 2014 |
Azilsartan is associated with increased circulating angiotensin-(1-7) levels and reduced renovascular 20-HETE levels.
Topics: Angiotensin I; Animals; Benzimidazoles; Blood Pressure; Disease Models, Animal; Hydroxyeicosatetraenoic Acids; Hypertension; Hypertension, Renovascular; Male; Oxadiazoles; Peptide Fragments; Rats; Rats, Sprague-Dawley; Vasoconstriction | 2015 |
Esophagoprotective activity of angiotensin-(1-7) in experimental model of acute reflux esophagitis. Evidence for the role of nitric oxide, sensory nerves, hypoxia-inducible factor-1alpha and proinflammatory cytokines.
Topics: Angiotensin I; Angiotensin II; Animals; Cyclooxygenase 2; Disease Models, Animal; Esophagitis, Peptic; Esophagus; Hypoxia-Inducible Factor 1, alpha Subunit; Interleukin-1beta; Male; Mucous Membrane; Nitric Oxide; Peptide Fragments; Protective Agents; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats, Wistar; Receptors, G-Protein-Coupled; Regional Blood Flow; RNA, Messenger; Sensory Receptor Cells; Tumor Necrosis Factor-alpha | 2014 |
Angiotensin-(1-7) attenuates airway remodelling and hyperresponsiveness in a model of chronic allergic lung inflammation.
Topics: Airway Remodeling; Angiotensin I; Animals; Anti-Inflammatory Agents; Bronchial Hyperreactivity; Bronchoconstriction; Collagen; Cytokines; Disease Models, Animal; Hypertrophy, Right Ventricular; Immunoglobulin E; Inflammation Mediators; Lung; Male; Mice, Inbred BALB C; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Ovalbumin; Peptide Fragments; Phosphorylation; Pneumonia; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Respiratory Hypersensitivity; Signal Transduction | 2015 |
Regulation of insulin sensitivity, insulin production, and pancreatic β cell survival by angiotensin-(1-7) in a rat model of streptozotocin-induced diabetes mellitus.
Topics: Angiotensin I; Animals; Apoptosis Regulatory Proteins; Cell Survival; Diabetes Mellitus, Experimental; Disease Models, Animal; Hypoglycemic Agents; Insulin; Insulin Resistance; Insulin Secretion; Insulin-Secreting Cells; Male; Peptide Fragments; Rats; Rats, Wistar | 2015 |
Effect of a stable Angiotensin-(1-7) analogue on progenitor cell recruitment and cardiovascular function post myocardial infarction.
Topics: Angiogenesis Inducing Agents; Angiotensin I; Animals; Cardiomegaly; Disease Models, Animal; Endothelial Cells; Flow Cytometry; Male; Mice; Mice, Inbred C57BL; Myocardial Infarction; Myocytes, Cardiac; Peptide Fragments; Stem Cells; Time Factors; Vasodilator Agents | 2015 |
ACE2 and Ang-(1-7) protect endothelial cell function and prevent early atherosclerosis by inhibiting inflammatory response.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Apolipoproteins E; Atherosclerosis; Cell Adhesion; Cell Movement; Chemokine CCL2; Disease Models, Animal; E-Selectin; Endothelium, Vascular; Gene Transfer Techniques; Humans; In Vitro Techniques; Inflammation; Mice; Peptide Fragments; Peptidyl-Dipeptidase A; Signal Transduction; Vascular Cell Adhesion Molecule-1 | 2015 |
Combination of angiotensin-(1-7) with perindopril is better than single therapy in ameliorating diabetic cardiomyopathy.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Apoptosis; Blood Glucose; Cardiomegaly; Cell Communication; Cell Differentiation; Cell Proliferation; Collagen; Diabetic Cardiomyopathies; Disease Models, Animal; Drug Therapy, Combination; Echocardiography; Fibroblasts; Fibrosis; Heart Ventricles; Hemodynamics; Male; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Peptide Fragments; Peptidyl-Dipeptidase A; Perindopril; Phosphorylation; Rats; Receptors, Angiotensin; Transforming Growth Factor beta1; Ventricular Dysfunction, Left | 2015 |
Early co-expression of cyclooxygenase-2 and renin in the rat kidney cortex contributes to the development of N(G)-nitro-L-arginine methyl ester induced hypertension.
Topics: 6-Ketoprostaglandin F1 alpha; Angiotensin I; Angiotensin II; Animals; Antihypertensive Agents; Captopril; Celecoxib; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Disease Models, Animal; Gene Expression Regulation; Hypertension, Renal; Kidney Cortex; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide; Peptide Fragments; Random Allocation; Rats, Wistar; Renin; RNA, Messenger | 2015 |
Comparison of angiotensin-(1-7), losartan and their combination on atherosclerotic plaque formation in apolipoprotein E knockout mice.
Topics: Angiotensin I; Angiotensin II Type 1 Receptor Blockers; Animals; Aorta, Abdominal; Aortic Diseases; Apolipoproteins E; Atherosclerosis; Blood Pressure; Cell Line; Cell Movement; Cell Proliferation; Diet, High-Fat; Disease Models, Animal; Drug Therapy, Combination; Endothelium, Vascular; Humans; Lipids; Losartan; Macrophages; Male; Mice, Knockout; Muscle, Smooth, Vascular; Peptide Fragments; Plaque, Atherosclerotic; Renin-Angiotensin System; Superoxides; Time Factors; Vasodilation | 2015 |
ACE2-Ang (1-7) axis is induced in pressure overloaded rat model.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Blotting, Western; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Heart Failure; Male; Myocardium; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Sprague-Dawley; Real-Time Polymerase Chain Reaction | 2015 |
Angiotensin-(1-7) is Reduced and Inversely Correlates with Tau Hyperphosphorylation in Animal Models of Alzheimer's Disease.
Topics: Alzheimer Disease; Angiotensin I; Animals; Brain; Disease Models, Animal; Disease Progression; Male; Mice, Inbred C57BL; Mice, Transgenic; Peptide Fragments; Phosphorylation; tau Proteins | 2016 |
Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the development of renal dysfunction in rats with volume overload induced by aorto-caval fistula.
Topics: 8,11,14-Eicosatrienoic Acid; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Benzoates; Disease Models, Animal; Drug Evaluation, Preclinical; Epoxide Hydrolases; Epoxy Compounds; Heart Failure; Kidney; Male; Myocardium; Peptide Fragments; Random Allocation; Rats; Renal Insufficiency; Renin-Angiotensin System; Ultrasonography; Urea | 2015 |
Beneficial effects of angiotensin-(1-7) against deoxycorticosterone acetate-induced diastolic dysfunction occur independently of changes in blood pressure.
Topics: Angiotensin I; Animals; Blood Pressure; Calcium; Calcium Signaling; Desoxycorticosterone Acetate; Disease Models, Animal; Dose-Response Relationship, Drug; Heart Failure, Diastolic; Hydralazine; Hypertension; Male; Peptide Fragments; Rats; Rats, Sprague-Dawley; Rats, Transgenic | 2015 |
Modulation of cardiac L-type Ca2+ current by angiotensin-(1-7): normal versus heart failure.
Topics: Angiotensin I; Animals; Bradykinin; Calcium Channels, L-Type; Calcium Signaling; Cardiotonic Agents; Disease Models, Animal; Heart Failure; Isoproterenol; Male; Membrane Potentials; Myocytes, Cardiac; Necrosis; Nitric Oxide; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Time Factors; Ventricular Function, Left | 2015 |
Angiotensin-(1-7) counteracts the effects of Ang II on vascular smooth muscle cells, vascular remodeling and hemorrhagic stroke: Role of the NFкB inflammatory pathway.
Topics: Angiotensin I; Angiotensin II; Animals; Apoptosis; Cell Movement; Cell Proliferation; Cells, Cultured; Cytokines; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelial Cells; Humans; Infarction, Middle Cerebral Artery; Inflammation Mediators; Intracranial Hemorrhages; Mice, Inbred C57BL; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Neuroprotective Agents; NF-kappa B; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Signal Transduction; Vascular Remodeling; Wound Healing | 2015 |
Angiotensin-(1-7) enhances the effects of angiotensin II on the cardiac sympathetic afferent reflex and sympathetic activity in rostral ventrolateral medulla in renovascular hypertensive rats.
Topics: Analysis of Variance; Angiotensin I; Angiotensin II; Animals; Blood Pressure; Disease Models, Animal; Drug Interactions; Hypertension, Renovascular; Losartan; Male; Medulla Oblongata; Peptide Fragments; Random Allocation; Rats; Rats, Sprague-Dawley; Reflex; Sympathetic Nervous System; Treatment Outcome | 2015 |
Angiotensin-(1-7) Decreases Cell Growth and Angiogenesis of Human Nasopharyngeal Carcinoma Xenografts.
Topics: Angiogenesis Inhibitors; Angiotensin I; Animals; Carcinoma; Cell Line, Tumor; Cell Movement; Cell Proliferation; Disease Models, Animal; Female; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; MAP Kinase Signaling System; Membrane Proteins; Mice; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neovascularization, Pathologic; Peptide Fragments; Proto-Oncogene Mas; Receptors, Vascular Endothelial Growth Factor; Tumor Burden; Vascular Endothelial Growth Factor A; Xenograft Model Antitumor Assays | 2016 |
Angiotensin-(1-7) Attenuates Skeletal Muscle Fibrosis and Stiffening in a Mouse Model of Extremity Sarcoma Radiation Therapy.
Topics: Analysis of Variance; Angiotensin I; Animals; Biopsy, Needle; Disease Models, Animal; Fibrosis; Hindlimb; Immunohistochemistry; Male; Mice; Mice, Inbred Strains; Muscle Neoplasms; Muscle, Skeletal; Peptide Fragments; Random Allocation; Reference Values; Sarcoma, Experimental; Sensitivity and Specificity; Spasm | 2016 |
Long-term administration of angiotensin (1-7) prevents heart and lung dysfunction in a mouse model of type 2 diabetes (db/db) by reducing oxidative stress, inflammation and pathological remodeling.
Topics: Angiotensin I; Animals; Anti-Inflammatory Agents; Antioxidants; Apoptosis; Cardiotonic Agents; Cytokines; Diabetes Mellitus, Type 2; Disease Models, Animal; Fibrosis; Heart; Hypoglycemic Agents; Lipid Metabolism; Lung; Male; Mice; Myocardium; Oxidative Stress; Peptide Fragments | 2016 |
Anti-Inflammatory Action of Angiotensin 1-7 in Experimental Colitis.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Anti-Inflammatory Agents; Colitis; Dextran Sulfate; Disease Models, Animal; Extracellular Signal-Regulated MAP Kinases; Female; Male; MAP Kinase Signaling System; Mice; Mice, Inbred BALB C; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Receptors, G-Protein-Coupled | 2016 |
Chronic Angiotensin-(1-7) Improves Insulin Sensitivity in High-Fat Fed Mice Independent of Blood Pressure.
Topics: Analysis of Variance; Angiotensin I; Animals; Blood Glucose; Blood Pressure Determination; Body Composition; Cardiovascular Diseases; Diet, High-Fat; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Schedule; Glucose Clamp Technique; Heart Function Tests; Hemodynamics; Hypertension; Infusions, Subcutaneous; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; Obesity; Peptide Fragments; Random Allocation; Reference Values; Renin-Angiotensin System | 2016 |
Intracerebroventricular Infusion of Angiotensin-(1-7) Ameliorates Cognitive Impairment and Memory Dysfunction in a Mouse Model of Alzheimer's Disease.
Topics: Acetazolamide; Alzheimer Disease; Amyloid beta-Peptides; Angiotensin I; Animals; Avoidance Learning; Carbonic Anhydrase Inhibitors; Cerebrovascular Circulation; Cognition Disorders; Disease Models, Animal; Drug Delivery Systems; Infusions, Intraventricular; Maze Learning; Memory Disorders; Mice; Mice, Transgenic; Peptide Fragments; Reaction Time; tau Proteins | 2016 |
G-Protein-Coupled Receptor MrgD Is a Receptor for Angiotensin-(1-7) Involving Adenylyl Cyclase, cAMP, and Phosphokinase A.
Topics: Adenylyl Cyclases; Angiotensin I; Animals; Blotting, Western; Cells, Cultured; Cyclic AMP-Dependent Protein Kinases; Disease Models, Animal; Endothelial Cells; Female; HEK293 Cells; Humans; Hypertension; Male; Mesangial Cells; Mice; Mice, Inbred C57BL; Mice, Knockout; Peptide Fragments; Phosphotransferases; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Sensitivity and Specificity | 2016 |
Diminazene aceturate, an angiotensin-converting enzyme II activator, prevents gastric mucosal damage in mice: Role of the angiotensin-(1-7)/Mas receptor axis.
Topics: Acetic Acid; Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Diminazene; Disease Models, Animal; Ethanol; Female; Gastric Mucosa; Male; Mice; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Signal Transduction; Stomach Ulcer | 2016 |
Could angiotensin-(1-7) be connected with improvement of microvascular function in diabetic patients? Angiotensin-(1-7) iontophoresis may provide the answer.
Topics: Angiotensin I; Animals; Diabetes Complications; Diabetic Angiopathies; Disease Models, Animal; Endothelial Cells; Humans; Iontophoresis; Mice; Microcirculation; Models, Theoretical; Peptide Fragments; Rats; Skin | 2016 |
An injectable capillary-like microstructured alginate hydrogel improves left ventricular function after myocardial infarction in rats.
Topics: Alginates; Angiotensin I; Animals; Biocompatible Materials; Disease Models, Animal; Echocardiography; Gelatin; Glucuronic Acid; Hexuronic Acids; Hydrogels; Injections, Intralesional; Myocardial Infarction; Peptide Fragments; Rats; Rats, Sprague-Dawley; Treatment Outcome; Ventricular Function, Left; Ventricular Remodeling | 2016 |
Captopril improves postresuscitation hemodynamics protective against pulmonary embolism by activating the ACE2/Ang-(1-7)/Mas axis.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Arterial Pressure; Biomarkers; Capillary Permeability; Captopril; Cardiopulmonary Resuscitation; Disease Models, Animal; Enzyme Activation; Female; Heart Arrest; Hemodynamics; Male; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Pulmonary Artery; Pulmonary Edema; Pulmonary Embolism; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Signal Transduction; Sus scrofa; Thrombolytic Therapy; Time Factors; Vascular Resistance; Ventricular Function, Right; Ventricular Pressure | 2016 |
Angiotensin-(1-7)/Mas receptor as an antinociceptive agent in cancer-induced bone pain.
Topics: Analgesics; Analysis of Variance; Angiotensin I; Angiotensin II Type 1 Receptor Blockers; Angiotensin II Type 2 Receptor Blockers; Animals; Bone Neoplasms; Cancer Pain; Cell Line, Tumor; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Hyperalgesia; Imidazoles; Losartan; Mice; Mice, Inbred BALB C; Nesting Behavior; Peptide Fragments; Pyridines; Rotarod Performance Test | 2016 |
Cognitive impairment in heart failure: A protective role for angiotensin-(1-7).
Topics: Angiotensin I; Animals; Cognitive Dysfunction; Disease Models, Animal; Heart Failure; Inflammation; Male; Maze Learning; Mice; Mice, Inbred C57BL; Myocardial Infarction; Peptide Fragments; Ventricular Remodeling; Visual Acuity | 2017 |
Angiotensin-(1-7) relieved renal injury induced by chronic intermittent hypoxia in rats by reducing inflammation, oxidative stress and fibrosis.
Topics: Acute Kidney Injury; Angiotensin I; Animals; Disease Models, Animal; Inflammation; Interleukin-6; Kidney; Male; Oxidative Stress; Peptide Fragments; Rats; Rats, Sprague-Dawley | 2017 |
Angiotensin-(1-7) regulates angiotensin II-induced matrix metalloproteinase-8 in vascular smooth muscle cells.
Topics: Angiotensin I; Angiotensin II; Animals; Atherosclerosis; Cells, Cultured; Disease Models, Animal; Enzyme Activation; Humans; Matrix Metalloproteinase 8; Mice, Knockout, ApoE; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; p38 Mitogen-Activated Protein Kinases; Peptide Fragments; Plaque, Atherosclerotic; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Time Factors | 2017 |
Effects of intracerebroventricular infusion of angiotensin-(1-7) on bradykinin formation and the kinin receptor expression after focal cerebral ischemia-reperfusion in rats.
Topics: Analysis of Variance; Angiotensin I; Animals; Bradykinin; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme-Linked Immunosorbent Assay; Gene Expression Regulation; Infarction, Middle Cerebral Artery; Injections, Intraventricular; Male; Peptide Fragments; Rats; Rats, Sprague-Dawley; Receptors, Bradykinin; Reperfusion; RNA, Messenger | 2008 |
Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function.
Topics: Acetylcholine; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Animals, Genetically Modified; Blood Pressure; Cardiomegaly; Disease Models, Animal; Endothelium, Vascular; Gene Expression Regulation, Enzymologic; Humans; Hypertension; Muscle, Smooth, Vascular; Nitroprusside; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Inbred SHR; Vasodilator Agents | 2008 |
Alterations in circulatory and renal angiotensin-converting enzyme and angiotensin-converting enzyme 2 in fetal programmed hypertension.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Betamethasone; Blood Pressure; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Fetal Development; Glucocorticoids; Hypertension; Kidney Tubules, Proximal; Male; Neprilysin; Peptide Fragments; Peptidyl-Dipeptidase A; Pregnancy; Sheep | 2009 |
Impairment of the angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas axis contributes to the acceleration of two-kidney, one-clip Goldblatt hypertension.
Topics: Angiotensin I; Angiotensin II; Animals; Blood Pressure; Cardiomegaly; Disease Models, Animal; Disease Progression; Hypertension, Renovascular; Infusion Pumps, Implantable; Peptide Fragments; Rats; Rats, Transgenic; Surgical Instruments; Telemetry; Vasodilator Agents | 2009 |
Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction.
Topics: Adaptation, Physiological; Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Biphenyl Compounds; Disease Models, Animal; Enzyme Activation; Inflammation Mediators; Irbesartan; Male; Matrix Metalloproteinases; Mice; Mice, Inbred C57BL; Mice, Knockout; Mitogen-Activated Protein Kinases; Myocardial Infarction; Myocardium; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Phosphorylation; Receptor, Angiotensin, Type 1; RNA, Messenger; Superoxides; Tetrazoles; Time Factors; Ultrasonography; Ventricular Remodeling | 2009 |
Inhibitory effects of angiotensin-(1-7) on the nerve stimulation-induced release of norepinephrine and neuropeptide Y from the mesenteric arterial bed.
Topics: Angiotensin I; Animals; Antihypertensive Agents; Disease Models, Animal; Dose-Response Relationship, Drug; Electric Stimulation; Hypertension; Imidazoles; Male; Mesenteric Arteries; Neuropeptide Y; NG-Nitroarginine Methyl Ester; Norepinephrine; Peptide Fragments; Pyridines; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptor, Angiotensin, Type 2; Sympathetic Nervous System; Synaptic Transmission | 2010 |
Infusion of angiotensin-(1-7) reduces glomerulosclerosis through counteracting angiotensin II in experimental glomerulonephritis.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Cell Proliferation; Cells, Cultured; Collagen Type I; Disease Models, Animal; Dose-Response Relationship, Drug; Fibronectins; Fibrosis; Gene Expression Regulation; Glomerulonephritis; Infusion Pumps, Implantable; Infusions, Subcutaneous; Isoantibodies; Kidney; Male; Mesangial Cells; Peptide Fragments; Peptidyl-Dipeptidase A; Plasminogen Activator Inhibitor 1; Proteinuria; Rats; Rats, Sprague-Dawley; Renin; RNA, Messenger; Time Factors; Transforming Growth Factor beta1 | 2010 |
Attenuation of isoproterenol-induced cardiac fibrosis in transgenic rats harboring an angiotensin-(1-7)-producing fusion protein in the heart.
Topics: Angiotensin I; Animals; Arrhythmias, Cardiac; Blood Pressure; Calcium; Disease Models, Animal; Fibrosis; Gene Expression Regulation; Heart Rate; Heart Ventricles; Isoproterenol; Male; Myocardial Reperfusion Injury; Myocytes, Cardiac; Myosin Heavy Chains; Peptide Fragments; Promoter Regions, Genetic; Rats; Rats, Sprague-Dawley; Rats, Transgenic; Telemetry | 2010 |
Angiotensin-(1-7) improves cardiac remodeling and inhibits growth-promoting pathways in the heart of fructose-fed rats.
Topics: Angiotensin I; Angiotensin II; Animals; Antihypertensive Agents; Blood Pressure; Dietary Carbohydrates; Disease Models, Animal; Fructose; Hypertension; Hypertrophy, Left Ventricular; Insulin; Insulin Resistance; Male; Peptide Fragments; Protein Tyrosine Phosphatase, Non-Receptor Type 6; Rats; Rats, Sprague-Dawley; Ventricular Remodeling | 2010 |
Astroglia are a possible cellular substrate of angiotensin(1-7) effects in the rostral ventrolateral medulla.
Topics: Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Astrocytes; Biosensing Techniques; Blood Pressure; Calcium Signaling; Catecholamines; Disease Models, Animal; Genes, Reporter; Hypertension; Losartan; Medulla Oblongata; Membrane Potentials; Microscopy, Confocal; Patch-Clamp Techniques; Peptide Fragments; Rats; Rats, Inbred SHR; Rats, Wistar; Tissue Culture Techniques | 2010 |
Effect of ACE2 and angiotensin-(1-7) in a mouse model of early chronic kidney disease.
Topics: Albuminuria; Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Blood Pressure; Body Weight; Chronic Disease; Disease Models, Animal; Glomerular Filtration Rate; Hematocrit; Imidazoles; Infusion Pumps; Injections, Subcutaneous; Inulin; Kidney; Kidney Diseases; Leucine; Losartan; Male; Mice; Nephrectomy; Organ Size; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptor, Angiotensin, Type 1; Receptors, G-Protein-Coupled; Time Factors | 2010 |
Vasoprotective and atheroprotective effects of angiotensin (1-7) in apolipoprotein E-deficient mice.
Topics: Acetylcholine; Angiotensin I; Angiotensin II; Angiotensin II Type 2 Receptor Blockers; Animals; Aortic Diseases; Apolipoproteins E; Atherosclerosis; Disease Models, Animal; Disease Progression; Dose-Response Relationship, Drug; Endothelium, Vascular; Imidazoles; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Nitric Oxide; Nitric Oxide Synthase Type III; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Pyridines; Receptor, Angiotensin, Type 2; Receptors, G-Protein-Coupled; Superoxides; Time Factors; Vasodilation; Vasodilator Agents | 2010 |
Vascular relaxation, antihypertensive effect, and cardioprotection of a novel peptide agonist of the MAS receptor.
Topics: Angiotensin I; Animals; Antihypertensive Agents; Aorta; Arrhythmias, Cardiac; Disease Models, Animal; Heart; Hypertension; Male; Membrane Proteins; Mice; Mice, Knockout; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; Vasodilation | 2010 |
Angiotensin-(1-7) and low-dose angiotensin II infusion reverse salt-induced endothelial dysfunction via different mechanisms in rat middle cerebral arteries.
Topics: Acetylcholine; Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Blood Pressure; Cerebral Arterial Diseases; Cerebral Arteries; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelium, Vascular; Imidazoles; Infusions, Intravenous; Losartan; Male; Nitroprusside; Peptide Fragments; Pyridines; Rats; Rats, Sprague-Dawley; Sodium Chloride, Dietary; Superoxides; Vasoconstrictor Agents; Vasodilation; Vasodilator Agents | 2010 |
Angiotensin-(1-7) upregulates cardiac nitric oxide synthase in spontaneously hypertensive rats.
Topics: Angiotensin I; Animals; Antihypertensive Agents; Bradykinin; Disease Models, Animal; Heart Ventricles; Hypertension; Male; Myocardium; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Peptide Fragments; Phosphorylation; Rats; Rats, Inbred SHR; Receptor, Angiotensin, Type 2; Up-Regulation | 2010 |
Angiotensin-(1-7) infusion is associated with increased blood pressure and adverse cardiac remodelling in rats with subtotal nephrectomy.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Antihypertensive Agents; Cardiomegaly; Disease Models, Animal; Drug Evaluation, Preclinical; Hypertension; Male; Nephrectomy; Peptide Fragments; Peptidyl-Dipeptidase A; Ramipril; Rats; Rats, Sprague-Dawley; Renal Insufficiency | 2011 |
Differential sympathetic activation induced by intermittent hypoxia and sleep loss in rats: Action of angiotensin (1-7).
Topics: Angiotensin I; Animals; Chromatography, High Pressure Liquid; Disease Models, Animal; Electrophysiology; Hemodynamics; Hypertension; Hypoxia; Male; Peptide Fragments; Rats; Rats, Wistar; Renin-Angiotensin System; Sleep Apnea Syndromes; Sleep Deprivation; Sympathetic Nervous System | 2011 |
Reciprocal changes in renal ACE/ANG II and ACE2/ANG 1-7 are associated with enhanced collecting duct renin in Goldblatt hypertensive rats.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Disease Models, Animal; Hypertension, Renovascular; Kidney; Kidney Cortex; Kidney Medulla; Kidney Tubules, Collecting; Male; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Renin; RNA, Messenger | 2011 |
Angiotensin-converting enzyme 2 deficiency in whole body or bone marrow-derived cells increases atherosclerosis in low-density lipoprotein receptor-/- mice.
Topics: Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Atherosclerosis; Bone Marrow Cells; Bone Marrow Transplantation; Cell Adhesion; Cells, Cultured; Coculture Techniques; Culture Media, Conditioned; Cytokines; Dietary Fats; Disease Models, Animal; Endothelial Cells; Humans; Inflammation Mediators; Losartan; Macrophages; Male; Mice; Mice, Knockout; Monocytes; Peptide Fragments; Peptidyl-Dipeptidase A; Receptors, LDL | 2011 |
Enhanced susceptibility to biomechanical stress in ACE2 null mice is prevented by loss of the p47(phox) NADPH oxidase subunit.
Topics: Analysis of Variance; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Cardiomyopathy, Dilated; Disease Models, Animal; Enzyme Activation; Extracellular Matrix; Heart Failure; Male; Matrix Metalloproteinases; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardium; NADPH Oxidases; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Phosphorylation; Stress, Mechanical; Superoxides; Time Factors; Ventricular Function, Left; Ventricular Remodeling | 2011 |
Renin angiotensin system and cardiac hypertrophy after sinoaortic denervation in rats.
Topics: Angiotensin I; Angiotensin II; Animals; Blood Pressure; Carotid Sinus; Collagen; Denervation; Disease Models, Animal; Heart Ventricles; Hemodynamics; Hypertension; Hypertrophy, Left Ventricular; Male; Peptide Fragments; Random Allocation; Rats; Rats, Wistar; Renin-Angiotensin System | 2010 |
Inhibition of Ras-GTPase farnesylation and the ubiquitin-proteasome system or treatment with angiotensin-(1-7) attenuates spinal cord injury-induced cardiac dysfunction.
Topics: Angiotensin I; Animals; Cardiovascular Diseases; Disease Models, Animal; Peptide Fragments; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Prenylation; ras Proteins; Rats; Rats, Sprague-Dawley; Spinal Cord Injuries; Ubiquitin | 2011 |
Role of angiotensin-(1-7) in rostral ventrolateral medulla in blood pressure regulation via sympathetic nerve activity in Wistar-Kyoto and spontaneous hypertensive rats.
Topics: Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Blood Pressure; Disease Models, Animal; Hypertension; Male; Medulla Oblongata; Microinjections; Peptide Fragments; Peptides; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Sympathetic Nervous System; Tetrazoles; Valine; Valsartan | 2011 |
An orally active formulation of angiotensin-(1-7) produces an antithrombotic effect.
Topics: Angiotensin I; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Fibrinolytic Agents; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Peptide Fragments; Rats; Rats, Inbred SHR; Venous Thrombosis | 2011 |
ACE2 and Ang-(1-7) confer protection against development of diabetic retinopathy.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Dependovirus; Diabetic Retinopathy; Disease Models, Animal; Enzyme Activation; Gene Expression; Gene Order; Genetic Therapy; Genetic Vectors; Intravitreal Injections; Male; Mice; Mice, Knockout; Nitric Oxide Synthase Type III; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Sprague-Dawley; Renin-Angiotensin System; Retina; Retinal Vessels | 2012 |
Central angiotensin (1-7) enhances baroreflex gain in conscious rabbits with heart failure.
Topics: Angiotensin I; Angiotensin II; Animals; Antihypertensive Agents; Baroreflex; Chronic Disease; Consciousness; Disease Models, Animal; Heart Failure; Heart Rate; Infusions, Intraventricular; Kidney; Male; Metoprolol; Peptide Fragments; Rabbits; Sympathetic Nervous System; Vagus Nerve | 2011 |
Effects of angiotensin (1-7) upon right ventricular function in experimental rat pulmonary embolism.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Antihypertensive Agents; Disease Models, Animal; Immunohistochemistry; Male; Myocardium; Peptide Fragments; Peptidyl-Dipeptidase A; Pulmonary Embolism; Rats; Rats, Sprague-Dawley; Ventricular Dysfunction, Right; Ventricular Function, Right | 2011 |
Cardioprotective effects of telmisartan against heart failure in rats induced by experimental autoimmune myocarditis through the modulation of angiotensin-converting enzyme-2/angiotensin 1-7/mas receptor axis.
Topics: Angiotensin I; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Apoptosis; Benzimidazoles; Benzoates; Biomarkers; Cytokines; Disease Models, Animal; Endoplasmic Reticulum; Heart Failure; Male; Mitogen-Activated Protein Kinases; Myocarditis; NADPH Oxidases; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Protective Agents; Protein Subunits; Rats; Signal Transduction; Superoxides; Telmisartan | 2011 |
Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin II receptor antagonist.
Topics: Angiotensin I; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme 2; Animals; Bronchoalveolar Lavage Fluid; Disease Models, Animal; Intubation, Intratracheal; Lipopolysaccharides; Losartan; Lung; Macrophages, Alveolar; Male; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Sprague-Dawley; Respiratory Distress Syndrome | 2011 |
Angiotensin-(1-7) deficiency and baroreflex impairment precede the antenatal Betamethasone exposure-induced elevation in blood pressure.
Topics: Angiotensin I; Angiotensin II Type 1 Receptor Blockers; Animals; Animals, Newborn; Baroreflex; Benzimidazoles; Betamethasone; Biphenyl Compounds; Blood Pressure; Disease Models, Animal; Female; Glucocorticoids; Heart Rate; Hypertension; Peptide Fragments; Pregnancy; Prenatal Exposure Delayed Effects; Receptor, Angiotensin, Type 1; Sheep; Tetrazoles | 2012 |
Angiotensin converting enzyme 2 contributes to sex differences in the development of obesity hypertension in C57BL/6 mice.
Topics: 3T3-L1 Cells; Adipocytes; Adiposity; Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Diet, High-Fat; Disease Models, Animal; Estrogens; Female; Gene Expression Regulation, Enzymologic; Hypertension; Losartan; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Obesity; Ovariectomy; Peptide Fragments; Peptidyl-Dipeptidase A; Progesterone; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Risk Factors; RNA, Messenger; Sex Factors; Testosterone; Time Factors; Weight Gain | 2012 |
Angiotensin-(1-7) attenuates hypertension in exercise-trained renal hypertensive rats.
Topics: Angiotensin I; Animals; Antihypertensive Agents; Blood Pressure; Cardiotonic Agents; Disease Models, Animal; Heart Ventricles; Hypertension, Renal; Hypertrophy, Left Ventricular; Kidney; Male; Nitric Oxide Synthase Type III; Peptide Fragments; Physical Conditioning, Animal; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 2; Surgical Instruments; Swimming | 2012 |
In vivo expression of angiotensin-(1-7) lowers blood pressure and improves baroreflex function in transgenic (mRen2)27 rats.
Topics: Angiotensin I; Animals; Arterial Pressure; Autonomic Nervous System; Baroreflex; Brain; Disease Models, Animal; Dual Specificity Phosphatase 1; Gene Expression Regulation; Gene Transfer Techniques; Genetic Therapy; Heart Rate; Hypertension; Injections; Male; Mice; Neprilysin; Peptide Fragments; Protein Tyrosine Phosphatase, Non-Receptor Type 1; Rats; Rats, Transgenic; Receptor, Angiotensin, Type 1; Renin; Renin-Angiotensin System; RNA, Messenger; Time Factors | 2012 |
Characterization of Angiotensin-(1-7) effects on the cardiovascular system in an experimental model of type-1 diabetes.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Captopril; Cardiovascular System; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Disease Models, Animal; Endothelin-1; Hyperglycemia; Kidney; Losartan; Male; NADPH Oxidases; Peptide Fragments; Peptides; Peptidyl-Dipeptidase A; Prostaglandins; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; Reperfusion Injury | 2012 |
Chronic infusion of angiotensin-(1-7) into the lateral ventricle of the brain attenuates hypertension in DOCA-salt rats.
Topics: Angiotensin I; Angiotensin II; Animals; Antihypertensive Agents; Baroreflex; Blood Pressure; Brain; Collagen Type I; Collagen Type III; Desoxycorticosterone; Disease Models, Animal; Heart Rate; Heart Ventricles; Hypertension; Infusions, Intraventricular; Kidney; Lateral Ventricles; Male; Peptide Fragments; Rats; Rats, Sprague-Dawley; RNA, Messenger; Sympathetic Nervous System; Time Factors | 2012 |
Murine recombinant angiotensin-converting enzyme 2: effect on angiotensin II-dependent hypertension and distinctive angiotensin-converting enzyme 2 inhibitor characteristics on rodent and human angiotensin-converting enzyme 2.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Blood Pressure; Disease Models, Animal; Humans; Hydrolysis; Hypertension; Imidazoles; In Vitro Techniques; Kidney; Leucine; Male; Mice; Mice, Inbred C57BL; Peptide Fragments; Peptides; Peptidyl-Dipeptidase A; Recombinant Proteins | 2012 |
Differences in oxidative stress status and expression of MKP-1 in dorsal medulla of transgenic rats with altered brain renin-angiotensin system.
Topics: Angiotensin I; Angiotensin II; Angiotensinogen; Animals; Blood Pressure; Disease Models, Animal; Dual Specificity Phosphatase 1; Gene Expression Regulation; Hypertension; Ion Channels; JNK Mitogen-Activated Protein Kinases; Male; Medulla Oblongata; Mitochondria; Mitochondrial Proteins; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; NADPH Oxidases; Oligonucleotides, Antisense; Oxidative Stress; Peptide Fragments; Phosphorylation; Rats; Rats, Sprague-Dawley; Rats, Transgenic; Reactive Oxygen Species; Renin; Renin-Angiotensin System; Signal Transduction; Uncoupling Protein 2 | 2012 |
Impact of ACE2 deficiency and oxidative stress on cerebrovascular function with aging.
Topics: Acetylcholine; Aging; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Cerebral Arteries; Cerebrovascular Circulation; Disease Models, Animal; Endothelium, Vascular; Male; Mice; Mice, Knockout; NADPH Oxidases; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Renin-Angiotensin System; RNA, Messenger; Vasculitis; Vasodilation; Vasodilator Agents | 2012 |
Angiotensin 1-7 as means to prevent the metabolic syndrome: lessons from the fructose-fed rat model.
Topics: Adipose Tissue; Angiotensin I; Animals; Cardiovascular Agents; Dietary Carbohydrates; Disease Models, Animal; Drug Administration Schedule; Epididymis; Extracellular Signal-Regulated MAP Kinases; Fructose; Gene Expression Regulation; Male; Metabolic Syndrome; Muscle, Skeletal; Oxidative Stress; Peptide Fragments; Phosphorylation; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Wistar; Reactive Oxygen Species; Receptors, G-Protein-Coupled; Transcription Factor RelA | 2013 |
Angiotensin-(1-7) inhibits vascular calcification in rats.
Topics: Actins; Alkaline Phosphatase; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Biomarkers; Calcium-Binding Proteins; Calponins; Cholecalciferol; Cytoskeletal Proteins; Disease Models, Animal; Gene Expression Regulation; Male; Microfilament Proteins; Muscle Proteins; Muscle, Smooth, Vascular; Nicotine; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Vascular Calcification | 2013 |
The nonpeptide ANG-(1-7) mimic AVE 0991 attenuates cardiac remodeling and improves baroreflex sensitivity in renovascular hypertensive rats.
Topics: Angiotensin I; Animals; Antihypertensive Agents; Baroreflex; Blood Pressure; Collagen; Disease Models, Animal; Dose-Response Relationship, Drug; Heart Rate; Hypertension, Renovascular; Imidazoles; Kidney; Male; Myocardium; Peptide Fragments; Rats; Rats, Inbred F344; Ventricular Remodeling | 2013 |
Antithrombotic effect of captopril and losartan is mediated by angiotensin-(1-7).
Topics: Angiotensin I; Angiotensin II; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animals; Blood Pressure; Captopril; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Synergism; Enzyme Inhibitors; Epoprostenol; Fibrinolytic Agents; Hypertension, Renal; Imidazoles; Infusions, Intravenous; Losartan; Male; Nitric Oxide; Nitric Oxide Synthase; Peptide Fragments; Pyridines; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Tetrazoles; Venous Thrombosis | 2002 |
Cardiac angiotensin-(1-7) in ischemic cardiomyopathy.
Topics: Angiotensin I; Animals; Cardiomyopathies; Disease Models, Animal; Hemodynamics; Immunohistochemistry; Ligation; Male; Myocardial Ischemia; Myocardium; Myocytes, Cardiac; Peptide Fragments; Rats; Rats, Inbred Lew | 2003 |
Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors.
Topics: Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Carboxypeptidases; Cardiomyopathy, Hypertrophic; Coronary Vessels; Disease Models, Animal; Enzyme Induction; Imidazoles; Ligation; Losartan; Male; Myocardial Infarction; Myocardium; Olmesartan Medoxomil; Peptide Fragments; Peptidyl-Dipeptidase A; Pyridines; Rats; Rats, Inbred Lew; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; RNA, Messenger; Tetrazoles; Ventricular Remodeling | 2004 |
Chronic liver injury in rats and humans upregulates the novel enzyme angiotensin converting enzyme 2.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Aorta, Thoracic; Carboxypeptidases; Cell Hypoxia; Cells, Cultured; Chronic Disease; Disease Models, Animal; Female; Hepatitis C, Chronic; Hepatocytes; Humans; Immunoenzyme Techniques; Liver; Liver Cirrhosis; Male; Nitroimidazoles; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Sprague-Dawley; Reverse Transcriptase Polymerase Chain Reaction; Up-Regulation; Vasodilation | 2005 |
Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1-7).
Topics: Analysis of Variance; Angiotensin I; Angiotensin II; Animals; Blood Pressure; Cardiomegaly; Disease Models, Animal; Fibrosis; Heart; Hypertension; Male; Myocardium; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptors, G-Protein-Coupled; Time Factors; Transforming Growth Factor beta; Ventricular Remodeling | 2007 |
Primary role of angiotensin-converting enzyme-2 in cardiac production of angiotensin-(1-7) in transgenic Ren-2 hypertensive rats.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Animals, Genetically Modified; Cardiomegaly; Disease Models, Animal; Half-Life; Hypertension; Imidazoles; Kinetics; Leucine; Male; Mice; Myocardium; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Sprague-Dawley; Renin | 2007 |
Evidence that the vasodilator angiotensin-(1-7)-Mas axis plays an important role in erectile function.
Topics: Angiotensin I; Angiotensin II; Animals; Desoxycorticosterone; Disease Models, Animal; Electric Stimulation; Enzyme Inhibitors; Erectile Dysfunction; Hypertension; Immunohistochemistry; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Penile Erection; Penis; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; Sodium Chloride, Dietary; Vasodilator Agents | 2007 |
Ovariectomy is protective against renal injury in the high-salt-fed older mRen2. Lewis rat.
Topics: Aging; Angiotensin I; Angiotensin II; Animals; Animals, Congenic; Blood Pressure; C-Reactive Protein; Cell Adhesion Molecules; Disease Models, Animal; Female; Fibrosis; Hypertension; Hypertrophy; Insulin-Like Growth Factor I; Intracellular Signaling Peptides and Proteins; Kidney; Kidney Diseases; Membrane Proteins; Ovariectomy; Peptide Fragments; Proteinuria; Rats; Rats, Inbred Lew; Renin; Renin-Angiotensin System; RNA, Messenger; Sodium Chloride, Dietary | 2007 |
Beneficial versus harmful effects of Angiotensin (1-7) on impulse propagation and cardiac arrhythmias in the failing heart.
Topics: Angiotensin I; Animals; Antihypertensive Agents; Cardiomyopathies; Cricetinae; Disease Models, Animal; Heart; Heart Rate; Immunohistochemistry; Membrane Potentials; Myocardium; Peptide Fragments; Sodium Channels | 2007 |
ACE2 and ANG-(1-7) in the rat uterus during early and late gestation.
Topics: Amnion; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Decidua; Disease Models, Animal; Epithelial Cells; Female; Hypertension, Pregnancy-Induced; Peptide Fragments; Peptidyl-Dipeptidase A; Placenta; Pregnancy; Pregnancy, Animal; Rats; Rats, Sprague-Dawley; RNA, Messenger; Uterus; Yolk Sac | 2008 |
Angiotensin-(1-12) is an alternate substrate for angiotensin peptide production in the heart.
Topics: Angiotensin I; Angiotensin II; Angiotensinogen; Angiotensins; Animals; Animals, Genetically Modified; Disease Models, Animal; Hypertension; Male; Myocardium; Peptide Fragments; Perfusion; Rats; Rats, Inbred Lew; Rats, Inbred SHR; Rats, Inbred WKY; Rats, Sprague-Dawley; Renin; Renin-Angiotensin System; Time Factors | 2008 |
Overexpression of ACE2 enhances plaque stability in a rabbit model of atherosclerosis.
Topics: Adenoviridae; Angioplasty, Balloon; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Aorta, Abdominal; Atherosclerosis; Cell Line; Cells, Cultured; Collagen; Diet, Atherogenic; Dietary Fats; Disease Models, Animal; Disease Progression; Genetic Vectors; Humans; Mice; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rabbits; Receptors, G-Protein-Coupled; Time Factors; Transduction, Genetic; Up-Regulation | 2008 |
Sex differences in circulating and renal angiotensins of hypertensive mRen(2). Lewis but not normotensive Lewis rats.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Angiotensinogen; Angiotensins; Animals; Animals, Genetically Modified; Blood Pressure; Disease Models, Animal; Female; Hypertension; Kidney; Male; Mice; Myocardium; Neprilysin; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Inbred Lew; Renin; Renin-Angiotensin System; Sex Factors | 2008 |
Increased expression of angiotensin converting enzyme 2 in conjunction with reduction of neointima by angiotensin II type 1 receptor blockade.
Topics: Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Aorta, Abdominal; Blood Pressure; Carotid Arteries; Catheterization; Disease Models, Animal; Heart Rate; Hyperplasia; Hypertension; Imidazoles; Male; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Inbred SHR; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Tetrazoles; Tunica Intima | 2008 |