angiotensin ii, des-phe(8)- has been researched along with Diabetes Mellitus, Type 2 in 14 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (7.14) | 29.6817 |
2010's | 9 (64.29) | 24.3611 |
2020's | 4 (28.57) | 2.80 |
Authors | Studies |
---|---|
Hao, H; Hao, Y; Li, C; Xu, Y; Zhang, F | 1 |
Godoy-Lugo, JA; Mendez, DA; Nakano, D; Nishiyama, A; Ortiz, RM; Rodriguez, R; Soñanez-Organis, JG | 1 |
Nakagawasai, O; Nemoto, W; Takahashi, K; Tan-No, K; Yamagata, R | 1 |
Borel, AL; Epaulard, O; Le Gouellec, A; Méry, G; Toussaint, B | 1 |
Franklin, R; Kuipers, A; Moll, GN; Wagner, E | 1 |
Abbate, M; Benigni, A; Cassis, P; Cerullo, D; Corna, D; Locatelli, M; Remuzzi, G; Rottoli, D; Villa, S; Zoja, C | 1 |
Gong, X; Li, G; Li, Y; Song, Y; Yuan, L | 1 |
Chen, YG; Gao, F; Hao, PP; Liu, YP; Yang, JM; Zhang, C; Zhang, MX; Zhang, Y | 1 |
Alenina, N; Bader, M; Braga, JF; Burghi, V; Dominici, FP; Giani, JF; Kotnik, K; Miquet, JG; Qadri, F; Santos, RA; Santos, SH; Todiras, M | 1 |
Burghi, V; Dominici, FP; Giani, JF; Muñoz, MC | 1 |
Cheang, WS; Huang, Y; Lan, HY; Lau, CW; Liu, J; Luo, JY; Raizada, MK; Tian, XY; Wang, L; Wong, CM; Wong, WT; Xu, J; Yao, X; Zhang, Y | 1 |
Meeks, CJ; Papinska, AM; Rodgers, KE; Soto, M | 1 |
Aoki, T; Gohda, T; Hagiwara, S; Ihm, CG; Ishikawa, Y; Jeong, KH; Lee, SH; Lee, TW; Lim, SJ; Moon, JY; Murakoshi, M; Ohara, I; Tanimoto, M; Tomino, Y; Yamazaki, T | 1 |
de Carvalho, MH; de Cássia Tostes Passaglia, R; dos Santos, R; Fortes, ZB; Nigro, D; Oliveira, MA; Rastelli, VM | 1 |
1 review(s) available for angiotensin ii, des-phe(8)- and Diabetes Mellitus, Type 2
Article | Year |
---|---|
Modulation of the action of insulin by angiotensin-(1-7).
Topics: Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Diabetes Mellitus, Type 2; Humans; Hypoglycemic Agents; Insulin; Insulin Resistance; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Signal Transduction | 2014 |
13 other study(ies) available for angiotensin ii, des-phe(8)- and Diabetes Mellitus, Type 2
Article | Year |
---|---|
Angiotensin-(1-7) improves diabetes mellitus-induced erectile dysfunction in rats by regulating nitric oxide synthase levels.
Topics: Angiotensin I; Animals; Calcium; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Erectile Dysfunction; Humans; Male; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Peptide Fragments; Proto-Oncogene Proteins c-akt; Rats | 2022 |
Improved lipogenesis gene expression in liver is associated with elevated plasma angiotensin 1-7 after AT1 receptor blockade in insulin-resistant OLETF rats.
Topics: Angiotensin I; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animals; Diabetes Mellitus, Type 2; Fatty Liver; Gene Expression; Glucose; Insulin; Lipogenesis; Liver; Metabolic Syndrome; Obesity; Peptide Fragments; Rats; Rats, Inbred OLETF; Receptor, Angiotensin, Type 1 | 2022 |
Downregulation of spinal angiotensin converting enzyme 2 is involved in neuropathic pain associated with type 2 diabetes mellitus in mice.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Down-Regulation; Male; Mice; Mice, Knockout; Mice, Obese; Mice, Transgenic; Neuralgia; p38 Mitogen-Activated Protein Kinases; Peptide Fragments; Peptidyl-Dipeptidase A; Spinal Cord | 2020 |
COVID-19: Underlying Adipokine Storm and Angiotensin 1-7 Umbrella.
Topics: Adipokines; Angiotensin I; Angiotensin-Converting Enzyme 2; Betacoronavirus; Coronavirus Infections; COVID-19; Diabetes Mellitus, Type 2; Humans; Metabolic Syndrome; Obesity; Pandemics; Peptide Fragments; Peptidyl-Dipeptidase A; Pneumonia, Viral; SARS-CoV-2; Severe Acute Respiratory Syndrome | 2020 |
Efficacy of lanthionine-stabilized angiotensin-(1-7) in type I and type II diabetes mouse models.
Topics: Alanine; Angiotensin I; Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Female; Insulin; Mice; Mice, Inbred C57BL; Peptide Fragments; Streptozocin; Sulfides; Treatment Outcome | 2019 |
Addition of cyclic angiotensin-(1-7) to angiotensin-converting enzyme inhibitor therapy has a positive add-on effect in experimental diabetic nephropathy.
Topics: Alanine; Angiotensin I; Angiotensin-Converting Enzyme Inhibitors; Animals; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Disease Models, Animal; Drug Therapy, Combination; Half-Life; Humans; Kidney Glomerulus; Lisinopril; Male; Mice; Mice, Transgenic; Microscopy, Electron, Transmission; Peptide Fragments; Peptides, Cyclic; Proteinuria; Sulfides | 2019 |
Ang(1-7) treatment attenuates β-cell dysfunction by improving pancreatic microcirculation in a rat model of Type 2 diabetes.
Topics: Angiotensin I; Angiotensin II; Animals; Apoptosis; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models, Animal; Insulin; Insulin Secretion; Islets of Langerhans; Male; Microcirculation; Nitric Oxide; Nitric Oxide Synthase Type III; Pancreas; Peptide Fragments; Rats; Rats, Wistar | 2013 |
Association of plasma angiotensin-(1-7) level and left ventricular function in patients with type 2 diabetes mellitus.
Topics: Aged; Angiotensin I; Diabetes Mellitus, Type 2; Female; Humans; Male; Peptide Fragments; Stroke Volume; Ventricular Dysfunction, Left | 2013 |
Oral administration of angiotensin-(1-7) ameliorates type 2 diabetes in rats.
Topics: Administration, Oral; Angiotensin I; Animals; Animals, Newborn; Deoxyglucose; Diabetes Mellitus, Type 2; Hyperglycemia; Hypoglycemic Agents; Insulin; Male; Myocytes, Cardiac; Peptide Fragments; Phosphorylation; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Signal Transduction | 2014 |
Upregulation of Angiotensin (1-7)-Mediated Signaling Preserves Endothelial Function Through Reducing Oxidative Stress in Diabetes.
Topics: Acetylcholine; Aged; Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Aorta; Cells, Cultured; Diabetes Mellitus, Type 2; Diminazene; Female; Human Umbilical Vein Endothelial Cells; Humans; Male; Mice, Inbred C57BL; Middle Aged; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Reactive Oxygen Species; Renal Artery; Up-Regulation; Vasodilator Agents | 2015 |
Long-term administration of angiotensin (1-7) prevents heart and lung dysfunction in a mouse model of type 2 diabetes (db/db) by reducing oxidative stress, inflammation and pathological remodeling.
Topics: Angiotensin I; Animals; Anti-Inflammatory Agents; Antioxidants; Apoptosis; Cardiotonic Agents; Cytokines; Diabetes Mellitus, Type 2; Disease Models, Animal; Fibrosis; Heart; Hypoglycemic Agents; Lipid Metabolism; Lung; Male; Mice; Myocardium; Oxidative Stress; Peptide Fragments | 2016 |
Attenuating effect of angiotensin-(1-7) on angiotensin II-mediated NAD(P)H oxidase activation in type 2 diabetic nephropathy of KK-A(y)/Ta mice.
Topics: Angiotensin I; Angiotensin II; Animals; Blood Pressure; Blotting, Western; Body Weight; Cells, Cultured; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Immunohistochemistry; Mesangial Cells; Mice; NADPH Oxidases; Peptide Fragments; Reactive Oxygen Species; Reverse Transcriptase Polymerase Chain Reaction; Statistics, Nonparametric | 2011 |
Lack of potentiation of bradykinin by angiotensin-(1-7) in a type 2 diabetes model: role of insulin.
Topics: Angiotensin I; Animals; Animals, Newborn; Blood Glucose; Bradykinin; Diabetes Mellitus, Type 2; Drug Interactions; Gene Expression; Hypoglycemic Agents; Immunohistochemistry; Indomethacin; Insulin; Male; NG-Nitroarginine Methyl Ester; Ouabain; Peptide Fragments; Rats; Rats, Wistar; Receptors, Bradykinin; Reverse Transcriptase Polymerase Chain Reaction; Streptozocin; Tetraethylammonium; Vasodilation | 2007 |