angiotensin ii, des-phe(8)- has been researched along with Cirrhosis in 57 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 6 (10.53) | 29.6817 |
2010's | 41 (71.93) | 24.3611 |
2020's | 10 (17.54) | 2.80 |
Authors | Studies |
---|---|
Cao, L; Chen, Y; Fan, J; Liu, Y; Lu, L; Yin, Y | 1 |
Azuelos, I; Baglole, CJ; Eidelman, DH; Haidar, Z; Huang, MJ; Morganstein, T; Trivlidis, J | 1 |
Carletti, R; Castoldi, G; di Gioia, CRT; Ippolito, S; Pelucchi, S; Stella, A; Zatti, G; Zerbini, G | 1 |
Kopkan, L; Kratky, V; Sykora, M; Szeiffova Bacova, B; Tribulova, N | 1 |
Chen, L; Han, W; Mou, Z; Zhu, X | 1 |
Liu, X; Xu, J; Yu, Z | 1 |
Dang, Z; Ge, R; Jin, G; Li, Z; Lu, D; Ma, L; Nan, X; Su, S | 1 |
Abrigo, J; Aguirre, F; Cabello-Verrugio, C; Gonzalez, A; Gonzalez, F; Simon, F | 1 |
Gao, X; Ge, X; Jin, F; Li, S; Li, Y; Mao, N; Wei, Z; Xu, H; Yang, F; Yang, Y; Zhang, M; Zhang, Y | 1 |
Becker, LK; Coelho, DB; de Lima, WG; de Moura, SS; de Oliveira, EC; de Sousa, FB; Dos Santos, RAS; Martins Júnior, FAD; Totou, NL | 1 |
Guo, L; O'Rourke, ST; Sun, C; Yin, A; Zhang, Q; Zhong, T | 1 |
Guo, L; Han, S; He, W; Li, H; Shen, D; Wang, J; Zhang, Y | 1 |
Chen, WQ; Cheng, J; Ji, XP; Mao, Y; Qiao, L; Tie, YY; Xu, QB; Xu, YY; Zhai, CG; Zhang, C; Zhang, Y | 1 |
Alberici, LC; da Silveira, MB; de Oliveira da Silva, B; Dechant, CRP; Friedman, SL; Gonçalves, LR; Moraes, KCM; Ramos, LF; Sakane, KK; Silva, CM | 1 |
Ban, TH; Chang, YS; Choi, BS; Jang, IA; Kim, EN; Kim, MY; Lim, JH; Park, CW; Yoon, HE | 1 |
Bhattacharya, SK; Chen, Y; Liu, C; Meng, W; Sun, Y; Zhao, T; Zhao, W | 1 |
Cao, L; Chen, YL; Fan, J; Han, TL; Ling, Z; Xu, Y; Yin, Y; Zeng, M | 1 |
Hall, SE; Winslow, MA | 1 |
Ferreira, AJ; Silveira, KD; Simões e Silva, AC; Teixeira, MM | 1 |
Chan, JS; Chenier, I; Filep, JG; Ingelfinger, JR; Lo, CS; Maachi, H; Shi, Y; Zhang, SL | 1 |
Costa-Fraga, FP; da Silva, D; da Silva, RF; De Sousa, FB; Fraga-Silva, RA; Mach, F; Montecucco, F; Santos, RA; Savergnini, SQ; Sinisterra, RD; Stergiopulos, N | 1 |
Gao, PJ; Jin, HY; Lu, L; Oudit, GY; Penninger, JM; Shang, QH; Song, B; Xu, YL; Zhang, ZZ; Zhong, JC; Zhou, T; Zhu, DL | 1 |
Acuña, MJ; Bader, M; Brandan, E; Cabello-Verrugio, C; Cabrera, D; Muñoz-Canoves, P; Olguin, H; Pessina, P; Santos, RA; Vio, CP | 1 |
Chen, Y; Liu, C; Liu, H; Meng, W; Sun, Y; Zhao, T; Zhao, W | 1 |
Chapleau, MW; Cicha, MZ; De Sousa, FB; Sabharwal, R; Santos, RA; Sinisterra, RD | 1 |
Alrob, OA; DesAulniers, J; Lopaschuk, GD; Mori, J; Oudit, GY; Patel, VB; Ramprasath, T; Scholey, JW | 1 |
Acuña, MJ; Brandan, E; Cabrera, D; Rebolledo, D; Riquelme, C; Santos, RA; Torrejón, J | 1 |
Carver, KA; Gallagher, PE; Smith, TL; Tallant, EA | 1 |
He, Y; Li, X; Niu, X; Xu, M; Xue, Y; Zhao, L; Zhao, X | 1 |
Abdo, S; Chan, JS; Chenier, I; Filep, JG; Ingelfinger, JR; Lo, CS; Padda, R; Shi, Y; Zhang, SL | 1 |
Chen, YG; Hao, PP; Yang, JM; Zhang, C; Zhang, K; Zhang, MX; Zhang, Y | 1 |
Chen, Y; Gao, F; Hao, P; Liu, Y; Yang, J; Zhang, C; Zhang, K; Zhang, M; Zhang, Y | 1 |
Bracey, DN; Callahan, MF; Emory, CL; Gallagher, PE; Smith, TL; Tallant, EA; Wiggins, WF; Willey, JS | 1 |
Meeks, CJ; Papinska, AM; Rodgers, KE; Soto, M | 1 |
Chang, Q; Chen, LJ; Jin, HY; Oudit, GY; Song, B; Xu, R; Xu, YL; Yu, HM; Zhang, ZZ; Zhong, JC; Zhu, DL | 1 |
Miranda, AS; Rocha, NP; Rodrigues Prestes, TR; Simoes-E-Silva, AC; Teixeira, AL | 1 |
Cheng, M; Guan, M; Le, Y; Xue, J; Xue, Y; Zheng, Z | 1 |
Border, WA; Huang, Y; Noble, NA; Zhang, J | 1 |
Almeida, AP; Almeida, PW; Alves, MN; Bader, M; Castro, CH; Dias-Peixoto, MF; Fagundes-Moura, CR; Ferreira, AJ; Gava, E; Gomes, ER; Guatimosim, S; Guimarães, AM; Kitten, GT; Rentzsch, B; Reudelhuber, T; Santos, RA | 1 |
Li, G; Li, J; Liu, E; Xu, Z; Yang, S; Yang, W | 1 |
Chappell, MC; Ferrario, CM; Gallagher, PE; Ganten, D; Groban, L; Trask, AJ; Varagic, J; Westwood, BM | 1 |
Li, G; Meng, R; Pei, Z; Ren, J; Wu, Z; Xu, C; Yan, G; Zhuang, Z | 1 |
Cook, KL; Gallagher, PE; Metheny-Barlow, LJ; Tallant, EA | 1 |
Chen, WY; He, JG; Leng, XY; Ma, H; Zeng, WT | 1 |
Ferreira, AJ; Fraga-Silva, RA; Katovich, MJ; Qi, Y; Raizada, MK; Santos, RA; Shenoy, V | 1 |
Sharma, PL; Singh, K; Singh, T | 1 |
Ann Tallant, E; Gallagher, PE; McCollum, LT | 1 |
Gallagher, PE; McCollum, LT; Tallant, EA | 1 |
Burghi, V; Cao, G; Dominici, FP; Giani, JF; Muñoz, MC; Toblli, JE; Tomat, A; Turyn, D; Veiras, LC | 1 |
Gurusamy, N; Kodama, M; Lakshmanan, AP; Ma, M; Sukumaran, V; Suzuki, K; Veeraveedu, PT; Watanabe, K; Yamaguchi, K | 1 |
Passos-Silva, DG; Santos, RA; Verano-Braga, T | 1 |
Cai, YM; He, JG; Liao, XX; Liu, J; Ma, H; Wang, LC; Wang, LJ; Zeng, WT | 1 |
Cowling, RT; Greenberg, BH; Gurantz, D; Iwata, M; Moore, C; Yuan, JX; Zhang, S | 1 |
Grobe, JL; Katovich, MJ; Mao, H; Mecca, AP | 1 |
Bolton, TA; Grobe, JL; Katovich, MJ; Lingis, M; Machado, JM; Mecca, AP; Raizada, MK; Shenoy, V; Speth, RC | 1 |
Chappell, MC; Gallagher, PE; Groban, L; Pendergrass, KD; Pirro, NT; Yamaleyeva, LM | 1 |
Chappell, MC; Ferrario, CM; Garabelli, PJ; Modrall, JG; Penninger, JM | 1 |
5 review(s) available for angiotensin ii, des-phe(8)- and Cirrhosis
Article | Year |
---|---|
Involvement of the ACE2/Ang-(1-7)/MasR Axis in Pulmonary Fibrosis: Implications for COVID-19.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Cannabis; Cigarette Smoking; COVID-19; Fibrosis; Humans; Idiopathic Pulmonary Fibrosis; Inflammation; Lung; Pandemics; Peptide Fragments; Proto-Oncogene Mas; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Risk Factors; SARS-CoV-2; Spike Glycoprotein, Coronavirus | 2021 |
Muscle wasting: A review of exercise, classical and non-classical RAS axes.
Topics: Angiotensin I; Angiotensin II; Apoptosis; Exercise; Fibrosis; Humans; Mitochondria; Muscle, Skeletal; Muscular Atrophy; NADPH Oxidases; Peptide Fragments; Protein Biosynthesis; Reactive Oxygen Species; Renin-Angiotensin System; Ubiquitin-Protein Ligases | 2019 |
ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Cell Proliferation; Fibrosis; Humans; Kidney; Leukocytes; Models, Biological; Nephritis; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Signal Transduction | 2013 |
The Anti-Inflammatory Potential of ACE2/Angiotensin-(1-7)/Mas Receptor Axis: Evidence from Basic and Clinical Research.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Anti-Inflammatory Agents; Cytokines; Fibrosis; Gene Expression Regulation; Humans; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Signal Transduction | 2017 |
Angiotensin-(1-7): beyond the cardio-renal actions.
Topics: Angiogenesis Inhibitors; Angiotensin I; Animals; Anti-Inflammatory Agents; Antineoplastic Agents; Brain Ischemia; Cell Proliferation; Female; Fibrosis; Glucose; Humans; Insulin; Kidney; Lipid Metabolism; Male; Metabolic Syndrome; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Reproduction; Signal Transduction | 2013 |
52 other study(ies) available for angiotensin ii, des-phe(8)- and Cirrhosis
Article | Year |
---|---|
Angiotensin (ang) 1-7 inhibits ang II-induced atrial fibrosis through regulating the interaction of proto-oncogene tyrosine-protein kinase Src (c-Src) and Src homology region 2 domain-containing phosphatase-1 (SHP-1)).
Topics: Angiotensin I; Angiotensin II; Animals; Fibrosis; Matrix Metalloproteinase 2; p38 Mitogen-Activated Protein Kinases; Peptide Fragments; Protein Tyrosine Phosphatase, Non-Receptor Type 6; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-fyn; Rats; Rats, Sprague-Dawley; Signal Transduction; src Homology Domains; Transforming Growth Factor beta | 2021 |
Angiotensin Type 2 and Mas Receptor Activation Prevents Myocardial Fibrosis and Hypertrophy through the Reduction of Inflammatory Cell Infiltration and Local Sympathetic Activity in Angiotensin II-Dependent Hypertension.
Topics: Angiotensin I; Angiotensin II; Animals; Cardiomegaly; Disease Models, Animal; Fibrosis; Hypertension; Imidazoles; Injections, Intraperitoneal; Losartan; Male; Peptide Fragments; Proto-Oncogene Mas; Rats; Rats, Sprague-Dawley; Sulfonamides; Thiophenes; Tyrosine 3-Monooxygenase | 2021 |
Anti-Fibrotic Potential of Angiotensin (1-7) in Hemodynamically Overloaded Rat Heart.
Topics: Angiotensin II; Animals; Connexin 43; Fibrosis; Heart; Heart Failure; Hypertension; Male; Rats; Rats, Transgenic | 2023 |
All-trans retinoic acid inhibits oxidative stress via ACE2/Ang (1-7)/MasR pathway in renal tubular epithelial cells stimulated with high glucose.
Topics: Angiotensin II; Angiotensin-Converting Enzyme 2; Epithelial Cells; Fibrosis; Glucose; Humans; NADPH Oxidases; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Tretinoin | 2023 |
Angiotensin-(1-7) suppresses airway inflammation and airway remodeling via inhibiting ATG5 in allergic asthma.
Topics: Airway Remodeling; Animals; Asthma; Autophagy-Related Protein 5; Disease Models, Animal; DNA, Complementary; Fibrosis; Humans; Inflammation; Interleukin-13; Lung; Mice; Mice, Inbred BALB C; Ovalbumin; RNA, Small Interfering; Transforming Growth Factor beta1 | 2023 |
Tsantan Sumtang attenuated chronic hypoxia-induced right ventricular structure remodeling and fibrosis by equilibrating local ACE-AngII-AT1R/ACE2-Ang1-7-Mas axis in rat.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Fibrosis; Hypertrophy, Right Ventricular; Hypoxia; Male; Medicine, Tibetan Traditional; Peptide Fragments; Peptidyl-Dipeptidase A; Plant Preparations; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Ventricular Remodeling | 2020 |
Protective Effect of Angiotensin 1-7 on Sarcopenia Induced by Chronic Liver Disease in Mice.
Topics: Angiotensin I; Animals; Autophagy; Biomarkers; Chronic Disease; Fibrosis; Liver Diseases; Male; Mice; Mice, Inbred C57BL; Muscle Fibers, Skeletal; Muscle Proteins; Muscle Strength; Muscle, Skeletal; Muscular Atrophy; Peptide Fragments; Proteasome Endopeptidase Complex; Sarcopenia; SKP Cullin F-Box Protein Ligases; Tripartite Motif Proteins; Ubiquitin; Ubiquitin-Protein Ligases | 2020 |
N-Acetyl-Seryl-Asparyl-Lysyl-Proline regulates lung renin angiotensin system to inhibit epithelial-mesenchymal transition in silicotic mice.
Topics: Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Captopril; Cell Line; Epithelial-Mesenchymal Transition; Fibrosis; Losartan; Lung; Male; Mice, Inbred C57BL; Oligopeptides; Peptide Fragments; Peptidyl-Dipeptidase A; Renin-Angiotensin System; Silicosis | 2020 |
Oral administration of angiotensin-(1-7) decreases muscle damage and prevents the fibrosis in rats after eccentric exercise.
Topics: Administration, Oral; Angiotensin I; Animals; Fibrosis; Male; Muscle, Skeletal; Peptide Fragments; Physical Conditioning, Animal; Rats; Rats, Wistar | 2021 |
Angiotensin-(1-7) attenuates angiotensin II-induced cardiac hypertrophy via a Sirt3-dependent mechanism.
Topics: Angiotensin I; Angiotensin II; Angiotensin Receptor Antagonists; Animals; Cardiomegaly; Cardiotonic Agents; Cell Size; Fibrosis; Male; Myocytes, Cardiac; Peptide Fragments; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Signal Transduction; Sirtuins; Superoxide Dismutase | 2017 |
The ACE2-Ang (1-7)-Mas receptor axis attenuates cardiac remodeling and fibrosis in post-myocardial infarction.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Collagen; Fibrosis; Heart Function Tests; Immunohistochemistry; Male; Myocardial Infarction; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; RNA, Messenger; Ventricular Dysfunction, Left; Ventricular Remodeling | 2017 |
DKK3 overexpression attenuates cardiac hypertrophy and fibrosis in an angiotensin-perfused animal model by regulating the ADAM17/ACE2 and GSK-3β/β-catenin pathways.
Topics: ADAM17 Protein; Adaptor Proteins, Signal Transducing; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Animals, Newborn; Apoptosis; beta Catenin; Cardiomegaly; Cell Proliferation; Disease Models, Animal; Fibroblasts; Fibrosis; Glycogen Synthase Kinase 3 beta; Inflammation; Intercellular Signaling Peptides and Proteins; Matrix Metalloproteinases; Mice, Inbred C57BL; Peptide Fragments; Peptidyl-Dipeptidase A; Perfusion; Phosphorylation; Signal Transduction; Smad3 Protein; Transforming Growth Factor beta1 | 2018 |
Altered global microRNA expression in hepatic stellate cells LX-2 by angiotensin-(1-7) and miRNA-1914-5p identification as regulator of pro-fibrogenic elements and lipid metabolism.
Topics: Angiotensin I; Cell Transdifferentiation; Cells, Cultured; Fibrosis; Gene Expression Regulation; Hepatic Stellate Cells; Humans; Lipid Metabolism; MicroRNAs; Peptide Fragments; Signal Transduction; Vasodilator Agents | 2018 |
Effects of Resveratrol on the Renin-Angiotensin System in the Aging Kidney.
Topics: Albuminuria; Angiotensin I; Angiotensin II; Animals; Anti-Inflammatory Agents; Antioxidants; Collagen Type IV; Fibronectins; Fibrosis; Kidney; Male; Mice, Inbred C57BL; NADPH Oxidases; Nitric Oxide Synthase Type III; Oxidative Stress; Peptide Fragments; Plant Extracts; Proto-Oncogene Proteins; Receptors, Angiotensin; Receptors, G-Protein-Coupled; Renal Insufficiency, Chronic; Renin-Angiotensin System; Resveratrol; Superoxide Dismutase | 2018 |
Molecular and Cellular Effect of Angiotensin 1-7 on Hypertensive Kidney Disease.
Topics: Angiotensin I; Animals; Antihypertensive Agents; Blood Pressure; Blotting, Western; Disease Models, Animal; Fibrosis; Gene Expression Regulation; Hypertension, Renal; Kidney; Lymphokines; Male; Nephritis; Oxidative Stress; Peptide Fragments; Platelet-Derived Growth Factor; Rats; Rats, Sprague-Dawley; RNA; Tissue Inhibitor of Metalloproteinases; Vascular Endothelial Growth Factor D | 2019 |
Unique mechanistic insights into the beneficial effects of angiotensin-(1-7) on the prevention of cardiac fibrosis: A metabolomic analysis of primary cardiac fibroblasts.
Topics: Angiotensin I; Angiotensin II; Animals; Arachidonic Acid; Calcium; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Cell Differentiation; Cell Proliferation; Cells, Cultured; Fibroblasts; Fibrosis; Gas Chromatography-Mass Spectrometry; Glutathione; Heart Diseases; Male; Metabolome; Oxidative Stress; Peptide Fragments; Rats, Sprague-Dawley; Reactive Oxygen Species | 2019 |
Overexpression of catalase prevents hypertension and tubulointerstitial fibrosis and normalization of renal angiotensin-converting enzyme-2 expression in Akita mice.
Topics: Albuminuria; Angiotensin I; Angiotensin-Converting Enzyme 2; Angiotensinogen; Animals; Apoptosis; Catalase; Diabetes Mellitus, Type 1; Diabetic Nephropathies; Fibrosis; Hypertension; Kidney; Kidney Tubules; Kidney Tubules, Proximal; Male; Mice; Mice, Transgenic; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A | 2013 |
An oral formulation of angiotensin-(1-7) reverses corpus cavernosum damages induced by hypercholesterolemia.
Topics: Administration, Oral; Angiotensin I; Animals; Apolipoproteins E; Collagen; Cyclodextrins; Disease Models, Animal; Endothelium, Vascular; Fibrosis; Hypercholesterolemia; Impotence, Vasculogenic; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Nitric Oxide; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type III; Oxidative Stress; Penile Erection; Penis; Peptide Fragments; Phosphoproteins; Proto-Oncogene Mas; Proto-Oncogene Proteins; Reactive Oxygen Species; Receptor, Angiotensin, Type 1; Receptors, G-Protein-Coupled; Vasodilation; Vasodilator Agents | 2013 |
Cardiac protective effects of irbesartan via the PPAR-gamma signaling pathway in angiotensin-converting enzyme 2-deficient mice.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Biphenyl Compounds; Cardiomegaly; Cardiotonic Agents; Collagen; Connective Tissue Growth Factor; Extracellular Signal-Regulated MAP Kinases; Fibrosis; Gene Expression Regulation; Irbesartan; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardium; Peptide Fragments; Peptidyl-Dipeptidase A; Phosphorylation; PPAR alpha; PPAR delta; PPAR gamma; Receptor, Angiotensin, Type 1; RNA, Messenger; Signal Transduction; Tetrazoles; Transforming Growth Factor beta | 2013 |
Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-β signalling.
Topics: Angiotensin I; Animals; Disease Models, Animal; Extracellular Matrix; Fibroblasts; Fibrosis; Humans; Male; Mice; Mice, Inbred mdx; Mice, Knockout; MicroRNAs; Muscle Strength; Muscle, Skeletal; Muscular Dystrophy, Duchenne; Peptide Fragments; Receptors, Cell Surface; Signal Transduction; Transforming Growth Factor beta | 2014 |
Autocrine and paracrine function of Angiotensin 1-7 in tissue repair during hypertension.
Topics: Aldosterone; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Apoptosis; Autocrine Communication; Disease Models, Animal; Fibrosis; Hypertension; Kidney; Male; Myocardium; Paracrine Communication; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Signal Transduction; Ventricular Remodeling | 2014 |
Chronic oral administration of Ang-(1-7) improves skeletal muscle, autonomic and locomotor phenotypes in muscular dystrophy.
Topics: Administration, Oral; Angiotensin I; Animals; Dystrophin; Fibrosis; Mice; Mice, Inbred C57BL; Mice, Knockout; Motor Activity; Muscle, Skeletal; Muscular Dystrophies; Peptide Fragments; Phenotype; Sarcoglycans | 2014 |
Angiotensin 1-7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inflammation, and lipotoxicity.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Diabetic Nephropathies; Fibrosis; Forkhead Box Protein O1; Forkhead Transcription Factors; Kidney; Lipase; Male; Mice; Mice, Inbred C57BL; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Reactive Oxygen Species; Sirtuin 1; STAT3 Transcription Factor; Triglycerides | 2014 |
ACE2 is augmented in dystrophic skeletal muscle and plays a role in decreasing associated fibrosis.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Cytoskeletal Proteins; Fibrosis; Humans; Inflammation; Mice; Mice, Inbred C57BL; Mice, Inbred mdx; Muscle Fibers, Skeletal; Muscular Dystrophy, Animal; Muscular Dystrophy, Duchenne; Peptide Fragments; Peptidyl-Dipeptidase A | 2014 |
Angiotensin-(1-7) prevents angiotensin II-induced fibrosis in cremaster microvessels.
Topics: Angiotensin I; Angiotensin II; Animals; Antihypertensive Agents; Arterioles; Blood Pressure; Chronic Disease; Connective Tissue Growth Factor; Dual Specificity Phosphatase 1; Fibrosis; Hypertension; Male; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 3; Muscle, Skeletal; Peptide Fragments; Phosphorylation; Rats; Rats, Inbred Lew; Smad2 Protein; Smad3 Protein; Transforming Growth Factor beta; Vasoconstrictor Agents | 2015 |
Effects of angiotensin-(1-7) on the proliferation and collagen synthesis of arginine vasopressin-stimulated rat cardiac fibroblasts: role of mas receptor-calcineurin-NF-κB signaling pathway.
Topics: Angiotensin I; Animals; Animals, Newborn; Arginine Vasopressin; Calcineurin; Cell Differentiation; Cell Proliferation; Collagen; Dose-Response Relationship, Drug; Fibroblasts; Fibrosis; NF-kappa B; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Signal Transduction | 2014 |
Angiotensin-(1-7) prevents systemic hypertension, attenuates oxidative stress and tubulointerstitial fibrosis, and normalizes renal angiotensin-converting enzyme 2 and Mas receptor expression in diabetic mice.
Topics: Analysis of Variance; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Blood Glucose; Blotting, Western; Diabetes Mellitus, Type 1; Fibrosis; Gene Expression Regulation; Histological Techniques; Hypertension; Immunohistochemistry; Injections, Subcutaneous; Kidney Diseases; Kidney Tubules, Proximal; Male; Mice; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Real-Time Polymerase Chain Reaction; Receptors, G-Protein-Coupled | 2015 |
Angiotensin-(1-7) treatment mitigates right ventricular fibrosis as a distinctive feature of diabetic cardiomyopathy.
Topics: Angiotensin I; Animals; Blood Glucose; Cells, Cultured; Coculture Techniques; Collagen; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetic Cardiomyopathies; Fibrosis; Heart Ventricles; Lipids; Male; Oxidative Stress; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats, Wistar; Receptor, Angiotensin, Type 2; Receptors, G-Protein-Coupled; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Signal Transduction; Time Factors; Transforming Growth Factor beta1; Ventricular Dysfunction, Right; Ventricular Function, Right; Ventricular Remodeling | 2015 |
Combination of angiotensin-(1-7) with perindopril is better than single therapy in ameliorating diabetic cardiomyopathy.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Apoptosis; Blood Glucose; Cardiomegaly; Cell Communication; Cell Differentiation; Cell Proliferation; Collagen; Diabetic Cardiomyopathies; Disease Models, Animal; Drug Therapy, Combination; Echocardiography; Fibroblasts; Fibrosis; Heart Ventricles; Hemodynamics; Male; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Peptide Fragments; Peptidyl-Dipeptidase A; Perindopril; Phosphorylation; Rats; Receptors, Angiotensin; Transforming Growth Factor beta1; Ventricular Dysfunction, Left | 2015 |
Angiotensin-(1-7) Attenuates Skeletal Muscle Fibrosis and Stiffening in a Mouse Model of Extremity Sarcoma Radiation Therapy.
Topics: Analysis of Variance; Angiotensin I; Animals; Biopsy, Needle; Disease Models, Animal; Fibrosis; Hindlimb; Immunohistochemistry; Male; Mice; Mice, Inbred Strains; Muscle Neoplasms; Muscle, Skeletal; Peptide Fragments; Random Allocation; Reference Values; Sarcoma, Experimental; Sensitivity and Specificity; Spasm | 2016 |
Long-term administration of angiotensin (1-7) prevents heart and lung dysfunction in a mouse model of type 2 diabetes (db/db) by reducing oxidative stress, inflammation and pathological remodeling.
Topics: Angiotensin I; Animals; Anti-Inflammatory Agents; Antioxidants; Apoptosis; Cardiotonic Agents; Cytokines; Diabetes Mellitus, Type 2; Disease Models, Animal; Fibrosis; Heart; Hypoglycemic Agents; Lipid Metabolism; Lung; Male; Mice; Myocardium; Oxidative Stress; Peptide Fragments | 2016 |
Angiotensin-converting enzyme 2 ameliorates renal fibrosis by blocking the activation of mTOR/ERK signaling in apolipoprotein E-deficient mice.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Apolipoproteins E; Atherosclerosis; Fibrosis; Kidney; Kidney Diseases; Male; MAP Kinase Signaling System; Mice, Inbred C57BL; Mice, Knockout; Peptide Fragments; Peptidyl-Dipeptidase A; Sirolimus; TOR Serine-Threonine Kinases | 2016 |
Effects of exendin-4 on the intrarenal renin-angiotensin system and interstitial fibrosis in unilateral ureteral obstruction mice: Exendin-4 and unilateral ureteral obstruction.
Topics: Actins; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Collagen Type I; Exenatide; Fibronectins; Fibrosis; Kidney; Male; Mice, Inbred BALB C; Peptide Fragments; Peptides; Peptidyl-Dipeptidase A; Renin-Angiotensin System; RNA, Messenger; Signal Transduction; Smad3 Protein; Transforming Growth Factor beta1; Ureteral Obstruction; Venoms | 2016 |
Infusion of angiotensin-(1-7) reduces glomerulosclerosis through counteracting angiotensin II in experimental glomerulonephritis.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Cell Proliferation; Cells, Cultured; Collagen Type I; Disease Models, Animal; Dose-Response Relationship, Drug; Fibronectins; Fibrosis; Gene Expression Regulation; Glomerulonephritis; Infusion Pumps, Implantable; Infusions, Subcutaneous; Isoantibodies; Kidney; Male; Mesangial Cells; Peptide Fragments; Peptidyl-Dipeptidase A; Plasminogen Activator Inhibitor 1; Proteinuria; Rats; Rats, Sprague-Dawley; Renin; RNA, Messenger; Time Factors; Transforming Growth Factor beta1 | 2010 |
Attenuation of isoproterenol-induced cardiac fibrosis in transgenic rats harboring an angiotensin-(1-7)-producing fusion protein in the heart.
Topics: Angiotensin I; Animals; Arrhythmias, Cardiac; Blood Pressure; Calcium; Disease Models, Animal; Fibrosis; Gene Expression Regulation; Heart Rate; Heart Ventricles; Isoproterenol; Male; Myocardial Reperfusion Injury; Myocytes, Cardiac; Myosin Heavy Chains; Peptide Fragments; Promoter Regions, Genetic; Rats; Rats, Sprague-Dawley; Rats, Transgenic; Telemetry | 2010 |
Angiotensin-(1-7) prevents atrial fibrosis and atrial fibrillation in long-term atrial tachycardia dogs.
Topics: Angiotensin I; Animals; Atrial Fibrillation; Base Sequence; DNA Primers; Dogs; Fibrosis; Heart Atria; Peptide Fragments; Reverse Transcriptase Polymerase Chain Reaction; Tachycardia | 2010 |
Inhibition of angiotensin-converting enzyme 2 exacerbates cardiac hypertrophy and fibrosis in Ren-2 hypertensive rats.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Blood Pressure; Cardiomegaly; Fibrosis; Heart Ventricles; Imidazoles; Leucine; Male; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Transgenic | 2010 |
Angiotensin-(1-7) ameliorates myocardial remodeling and interstitial fibrosis in spontaneous hypertension: role of MMPs/TIMPs.
Topics: Angiotensin I; Animals; Antihypertensive Agents; Atrial Natriuretic Factor; Blood Pressure; Cardiomegaly; Collagen; Collagenases; Fibrosis; Hypertension; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Myocardium; Myosin Heavy Chains; Peptide Fragments; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Tissue Inhibitor of Metalloproteinases | 2010 |
Angiotensin-(1-7) reduces fibrosis in orthotopic breast tumors.
Topics: Angiotensin I; Animals; Antihypertensive Agents; Blotting, Western; Breast Neoplasms; Carcinoma, Ductal, Breast; Dual Specificity Phosphatase 1; Female; Fibronectins; Fibrosis; Fluorescent Antibody Technique; Humans; Immunoenzyme Techniques; Lung Diseases, Interstitial; Mice; Mice, Nude; Mitogen-Activated Protein Kinase 3; Peptide Fragments; Phosphorylation; Transforming Growth Factor beta; Tumor Cells, Cultured | 2010 |
[Angiotensin-(1-7) reduced postangioplasty vascular fibrosis in abdominal aorta of rabbits].
Topics: Angiotensin I; Animals; Aorta, Abdominal; Collagen Type I; Collagen Type III; Fibrosis; Muscle, Smooth, Vascular; Peptide Fragments; Rabbits; Signal Transduction; Smad2 Protein; Transforming Growth Factor beta1 | 2010 |
Angiotensin-converting enzyme 2 activation protects against hypertension-induced cardiac fibrosis involving extracellular signal-regulated kinases.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Cell Culture Techniques; Collagen; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Fibroblasts; Fibrosis; Heart; Hypertension; Male; Myocardium; Peptide Fragments; Peptidyl-Dipeptidase A; Phosphorylation; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptor, Angiotensin, Type 1; Signal Transduction; Xanthones | 2011 |
Beneficial effects of angiotensin (1-7) in diabetic rats with cardiomyopathy.
Topics: Angiotensin I; Angiotensin II; Animals; Blood Glucose; Collagen; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Dyslipidemias; Fibrosis; Heart Ventricles; Hypertrophy, Left Ventricular; Lipids; Nitrates; Nitrites; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; Time Factors; Ventricular Function, Left; Ventricular Pressure | 2011 |
Angiotensin-(1-7) attenuates angiotensin II-induced cardiac remodeling associated with upregulation of dual-specificity phosphatase 1.
Topics: Angiotensin I; Angiotensin II; Animals; Antihypertensive Agents; Cardiomegaly; Drug Interactions; Dual Specificity Phosphatase 1; Fibrosis; Hypertension; Male; MAP Kinase Signaling System; Myocardium; Peptide Fragments; Rats; Rats, Sprague-Dawley; Up-Regulation; Vasoconstrictor Agents; Ventricular Remodeling | 2012 |
Angiotensin-(1-7) abrogates mitogen-stimulated proliferation of cardiac fibroblasts.
Topics: Angiotensin I; Angiotensin II; Animals; Animals, Newborn; Cell Proliferation; Cells, Cultured; Collagen; Cyclooxygenase 2; DNA; Dual Specificity Phosphatase 1; Endothelin-1; Fibroblasts; Fibrosis; Gene Expression Regulation; Heart Diseases; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Myocardium; Peptide Fragments; Phosphorylation; Prostaglandin-Endoperoxide Synthases; Rats; Signal Transduction | 2012 |
Angiotensin-(1-7) attenuates diabetic nephropathy in Zucker diabetic fatty rats.
Topics: Acute-Phase Proteins; Angiotensin I; Animals; Blood Pressure; Diabetic Nephropathies; Fibrosis; Hypertriglyceridemia; Hypoxia-Inducible Factor 1, alpha Subunit; Interleukin-6; Kidney; Lipocalin-2; Lipocalins; Male; Oxidative Stress; Peptide Fragments; Proteinuria; Proto-Oncogene Proteins; Rats; Rats, Zucker; Tumor Necrosis Factor-alpha | 2012 |
Olmesartan medoxomil treatment potently improves cardiac myosin-induced dilated cardiomyopathy via the modulation of ACE-2 and ANG 1-7 mas receptor.
Topics: Angiotensin I; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Biomarkers; Cardiac Myosins; Cardiomyopathy, Dilated; Endopeptidases; Fibrosis; Gene Expression Regulation; Heart; Hypertrophy, Left Ventricular; Imidazoles; Mitogen-Activated Protein Kinases; Olmesartan Medoxomil; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Receptors, G-Protein-Coupled; RNA, Messenger; Tetrazoles | 2012 |
Chronic administration of angiotensin-(1-7) attenuates pressure-overload left ventricular hypertrophy and fibrosis in rats.
Topics: Angiotensin I; Angiotensin II; Animals; Antihypertensive Agents; Aortic Coarctation; Blood Pressure; Fibrosis; Hypertrophy, Left Ventricular; Male; Myocardium; Peptide Fragments; Random Allocation; Rats; Rats, Sprague-Dawley; Ventricular Function, Left | 2005 |
Angiotensin-(1-7) binds to specific receptors on cardiac fibroblasts to initiate antifibrotic and antitrophic effects.
Topics: Angiotensin I; Animals; Binding Sites; Calcium; Cells, Cultured; Collagen; Dose-Response Relationship, Drug; Fibroblasts; Fibrosis; Growth Substances; Heart Ventricles; Male; Peptide Fragments; Protein Binding; Rats; Rats, Sprague-Dawley | 2005 |
Chronic angiotensin-(1-7) prevents cardiac fibrosis in DOCA-salt model of hypertension.
Topics: Angiotensin I; Animals; Blood Pressure; Cardiomegaly; Collagen; Coronary Vessels; Desoxycorticosterone; Dose-Response Relationship, Drug; Fibrosis; Heart Diseases; Hypertension; Male; Peptide Fragments; Rats; Rats, Sprague-Dawley; Ventricular Remodeling | 2006 |
Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1-7).
Topics: Analysis of Variance; Angiotensin I; Angiotensin II; Animals; Blood Pressure; Cardiomegaly; Disease Models, Animal; Fibrosis; Heart; Hypertension; Male; Myocardium; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptors, G-Protein-Coupled; Time Factors; Transforming Growth Factor beta; Ventricular Remodeling | 2007 |
Ovariectomy is protective against renal injury in the high-salt-fed older mRen2. Lewis rat.
Topics: Aging; Angiotensin I; Angiotensin II; Animals; Animals, Congenic; Blood Pressure; C-Reactive Protein; Cell Adhesion Molecules; Disease Models, Animal; Female; Fibrosis; Hypertension; Hypertrophy; Insulin-Like Growth Factor I; Intracellular Signaling Peptides and Proteins; Kidney; Kidney Diseases; Membrane Proteins; Ovariectomy; Peptide Fragments; Proteinuria; Rats; Rats, Inbred Lew; Renin; Renin-Angiotensin System; RNA, Messenger; Sodium Chloride, Dietary | 2007 |
Distinct roles for angiotensin-converting enzyme 2 and carboxypeptidase A in the processing of angiotensins within the murine heart.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Angiotensins; Animals; Carboxypeptidases A; Cell Proliferation; Fibrosis; Heart; Imidazoles; Immunohistochemistry; Leucine; Male; Membranes; Mice; Mice, Knockout; Myocardium; Peptide Fragments; Peptidyl-Dipeptidase A; Protease Inhibitors; Succinates | 2008 |