angiotensin ii, des-phe(8)- has been researched along with Cardiac Failure in 46 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 8 (17.39) | 29.6817 |
2010's | 31 (67.39) | 24.3611 |
2020's | 7 (15.22) | 2.80 |
Authors | Studies |
---|---|
de Oliveira, AA; Gheblawi, M; Grant, MB; John, R; Oudit, GY; Scholey, JW; Williams, VR | 1 |
Kopkan, L; Kratky, V; Sykora, M; Szeiffova Bacova, B; Tribulova, N | 1 |
Abassi, Z; Aronson, D; Cohen-Segev, R; Hamoud, S; Kabala, A; Karram, T; Kinaneh, S; Nativ, O | 1 |
He, Q; Huang, Y; Yang, L | 1 |
Gholampour, Y; Javanmardi, K; Soltani Hekmat, A; Tavassoli, A | 1 |
Dobashi, S; Fujii, T; Hisatake, S; Ikeda, T; Kabuki, T; Kiuchi, S; Oka, T | 1 |
Arfsten, H; Bartko, PE; Domenig, O; Goliasch, G; Hengstenberg, C; Hülsmann, M; Mascherbauer, J; Pavo, N; Poglitsch, M; Prausmüller, S; Spinka, G; Strunk, G; Uyanik-Ünal, K; Wurm, R; Zuckermann, A | 1 |
Fan, TM; Gladysheva, IP; Mehta, RM; Reed, GL; Sullivan, RD; Tripathi, R | 1 |
Kittana, N | 1 |
Fraidenburg, DR; Han, Y; Ren, X; Sun, S; Tang, H; Zhang, F; Zhao, M; Zhao, Z | 1 |
Cole-Jeffrey, CT; Grant, MB; Hazra, S; Katovich, MJ; Pepine, CJ; Raizada, MK | 1 |
Luo, X; Ma, Q; Wu, Y; Yu, J; Zhang, L; Zhang, Y | 1 |
Bartlett, MJ; Doyle, KP; Falk, T; Hay, M; Heien, ML; Konhilas, JP; Largent-Milnes, TM; Polt, R; Rodgers, K; Vanderah, TW | 1 |
Fukamizu, A; Imai, Y; Ito, H; Kadowaki, A; Kimura, A; Kuba, K; Liu, PP; Penninger, JM; Sato, T; Suzuki, T; Watanabe, H | 1 |
Chamsi-Pasha, MA; Shao, Z; Tang, WH | 1 |
Li, J; Lu, J; Xing, J | 1 |
Červenka, L; Husková, Z; Melenovský, V; Nishiyama, A; Sadowski, J; Škaroupková, P | 1 |
Han, Z; Jia, S; Li, Y; Liang, B; Wang, C; Xue, J; Zhang, Y | 1 |
Bürgelová, M; Červenka, L; Hammock, BD; Husková, Z; Hwang, SH; Imig, JD; Melenovský, V; Sadowski, J; Škaroupková, P; Sporková, A | 1 |
Cheng, CP; Cheng, HJ; Ferrario, CM; Li, T; Zhou, P | 1 |
Basu, R; Das, SK; Grant, MB; Lopaschuk, GD; McLean, BA; Mori, J; Oudit, GY; Parajuli, N; Patel, VB; Penninger, JM; Ramprasath, T | 1 |
Grant, MB; Oudit, GY; Patel, VB; Zhong, JC | 1 |
Dobashi, S; Hisatake, S; Ikeda, T; Kabuki, T; Kiuchi, S; Oka, T | 1 |
Barnes, CA; Constantopoulos, E; Hay, M; Konhilas, J; Samareh-Jahani, F; Uprety, AR; Vanderah, TW | 1 |
Chen, X; Lezutekong, JN; Oudit, GY; Patel, VB | 1 |
Chen, J; He, Q; Li, Y; Pen, W; Shou, Z; Wu, J; Zhang, P; Zhu, Y | 1 |
De Mello, WC | 1 |
Gao, L; Patel, KP; Schultz, HD; Wang, W; Zucker, IH | 1 |
Escher, F; Qian, C; Reudelhuber, TL; Roks, AJ; Schoemaker, RG; Schultheiss, HP; Schumacher, SM; Tschöpe, C; van Gilst, WH; Walther, T; Wang, Y; Westermann, D | 1 |
Dalzell, JR; Jackson, CE | 1 |
Cowling, RT; Greenberg, B; Iwata, M; Yeo, SJ | 1 |
Basu, R; Bodiga, S; Guo, D; Holland, SM; Kassiri, Z; Liu, GC; Lo, J; Oudit, GY; Penninger, JM; Scholey, JW; Wang, W; Zhong, JC | 1 |
Oudit, GY; Penninger, JM | 1 |
Bodiga, S; Das, SK; Lo, J; Oudit, GY; Patel, V; Wang, W | 1 |
Belatti, DA; Curry, PL; Gao, L; Kar, S; Zucker, IH | 1 |
Gurusamy, N; Kodama, M; Lakshmanan, AP; Ma, M; Sukumaran, V; Suzuki, K; Veeraveedu, PT; Watanabe, K; Yamaguchi, K | 1 |
Cao, K; Chen, XM; Huang, HJ; Huang, J; Lu, XZ; Qin, XY; Yang, XH; Yong, YH; Zheng, HJ; Zong, WN | 1 |
Gao, L; Lazartigues, E; Xiao, L; Zucker, IH | 1 |
Gurusamy, N; Kodama, M; Lakshmanan, AP; Ma, M; Nagata, M; Sukumaran, V; Suzuki, K; Takagi, R; Veeraveedu, PT; Watanabe, K; Yamaguchi, K | 1 |
Patel, KP; Schultz, HD | 1 |
Basu, R; Bodiga, S; Das, SK; Fan, D; Kassiri, Z; Oudit, GY; Patel, VB; Wang, W; Wang, Z; Zhong, J | 1 |
Davie, AP; McMurray, J | 1 |
Gamliel-Lazarovich, A; Kaplan, M; Keidar, S | 1 |
DiBona, GF; Jones, SY | 1 |
Ferrario, CM | 1 |
Boomsma, F; Henning, RH; Loot, AE; Roks, AJ; Suurmeijer, AJ; Tio, RA; van Gilst, WH | 1 |
11 review(s) available for angiotensin ii, des-phe(8)- and Cardiac Failure
Article | Year |
---|---|
Angiotensin-converting enzyme 2-Angiotensin 1-7/1-9 system: novel promising targets for heart failure treatment.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Cardiovascular Agents; Heart Failure; Humans; Molecular Mimicry; Molecular Targeted Therapy; Peptide Fragments; Peptidyl-Dipeptidase A; Signal Transduction; Treatment Outcome | 2018 |
Angiotensin-converting enzyme 2 as a therapeutic target for heart failure.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Cardiovascular Agents; Heart Failure; Humans; Hypertension; Molecular Targeted Therapy; Peptide Fragments; Peptidyl-Dipeptidase A; Renin-Angiotensin System; Ventricular Remodeling | 2014 |
Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Heart Failure; Humans; Peptide Fragments; Peptidyl-Dipeptidase A; Renin-Angiotensin System; Signal Transduction | 2016 |
Recombinant Human ACE2 and the Angiotensin 1-7 Axis as Potential New Therapies for Heart Failure.
Topics: Angiotensin I; Heart Failure; Humans; Peptide Fragments; Peptidyl-Dipeptidase A; Recombinant Proteins; Renin-Angiotensin System; Vasodilator Agents | 2017 |
Regulation of central angiotensin type 1 receptors and sympathetic outflow in heart failure.
Topics: Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Chronic Disease; Exercise; Heart; Heart Failure; Humans; Medulla Oblongata; Neurons; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Receptor, Angiotensin, Type 1; Signal Transduction; Sympathetic Nervous System; Transcription Factor AP-1; Transcription, Genetic; Up-Regulation | 2009 |
Novel neurohormonal insights with therapeutic potential in chronic heart failure.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Antihypertensive Agents; Cardiovascular Physiological Phenomena; Heart Failure; Humans; Intercellular Signaling Peptides and Proteins; Myocardium; Peptide Fragments; Peptidyl-Dipeptidase A; Prorenin Receptor; Receptors, Cell Surface; Relaxin; Renin; Urocortins | 2010 |
Targeting the ACE2-Ang-(1-7) pathway in cardiac fibroblasts to treat cardiac remodeling and heart failure.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Gene Expression; Heart; Heart Failure; Humans; Molecular Targeted Therapy; Myocardium; Myofibroblasts; Organ Specificity; Peptide Fragments; Peptidyl-Dipeptidase A; Renin-Angiotensin System; Translational Research, Biomedical; Ventricular Remodeling | 2011 |
Recombinant human angiotensin-converting enzyme 2 as a new renin-angiotensin system peptidase for heart failure therapy.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Diastole; Heart Failure; Humans; Peptide Fragments; Peptidyl-Dipeptidase A; Recombinant Proteins; Renin-Angiotensin System; Signal Transduction | 2011 |
Role of ACE2 in diastolic and systolic heart failure.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Heart Failure; Humans; Hypertension; Peptide Fragments; Peptidyl-Dipeptidase A; Renin-Angiotensin System; Signal Transduction | 2012 |
Angiotensin peptides and nitric oxide in cardiovascular disease.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Cardiovascular Diseases; Heart Failure; Humans; Nitric Oxide; Peptide Fragments; Peptides; Peptidyl-Dipeptidase A; Receptor, Angiotensin, Type 1; Renin-Angiotensin System | 2013 |
ACE2 of the heart: From angiotensin I to angiotensin (1-7).
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Antihypertensive Agents; Disease Progression; Heart Failure; Humans; Myocardium; Peptide Fragments; Peptidyl-Dipeptidase A; Receptor, Angiotensin, Type 1; Ventricular Remodeling | 2007 |
35 other study(ies) available for angiotensin ii, des-phe(8)- and Cardiac Failure
Article | Year |
---|---|
An advanced endothelial murine HFpEF model: eNOS is critical for angiotensin 1-7 rescue of the diabetic phenotype.
Topics: Angiotensin I; Animals; Diabetes Mellitus; Endothelium, Vascular; Heart Failure; Mice; Nitric Oxide Synthase Type III; Peptide Fragments; Phenotype; Stroke Volume | 2022 |
Anti-Fibrotic Potential of Angiotensin (1-7) in Hemodynamically Overloaded Rat Heart.
Topics: Angiotensin II; Animals; Connexin 43; Fibrosis; Heart; Heart Failure; Hypertension; Male; Rats; Rats, Transgenic | 2023 |
Effects of Angiotensin 1-7 and Mas Receptor Agonist on Renal System in a Rat Model of Heart Failure.
Topics: Angiotensin I; Angiotensin II; Animals; Cardiomegaly; Heart Failure; Kidney; Peptide Fragments; Rats; Renin-Angiotensin System | 2023 |
[Regulation of angiotensin-converting enzyme 2-angiotensin (1-7)-Mas axis provides a new target for the treatment of cardiac remodeling and heart failure].
Topics: Angiotensin I; Heart Failure; Humans; Peptide Fragments; Ventricular Remodeling | 2019 |
Angiotensin (1-7) and Apelin co-therapy: New strategy for heart failure treatment of rats.
Topics: Adrenergic beta-Agonists; Angiotensin I; Animals; Apelin; Cardiomegaly; Heart Failure; Hemodynamics; Isoproterenol; L-Lactate Dehydrogenase; Male; Malondialdehyde; Myocardium; Peptide Fragments; Random Allocation; Rats; Rats, Sprague-Dawley; Vasodilator Agents | 2020 |
The serum angiotensin-converting enzyme 2 and angiotensin-(1-7) concentrations after optimal therapy for acute decompensated heart failure with reduced ejection fraction.
Topics: Aged; Angiotensin I; Angiotensin-Converting Enzyme 2; Biomarkers; Case-Control Studies; Female; Heart Failure; Humans; Male; Middle Aged; Peptide Fragments; Recovery of Function; Stroke Volume; Time Factors; Treatment Outcome; Ventricular Function, Left | 2020 |
Myocardial Angiotensin Metabolism in End-Stage Heart Failure.
Topics: Angiotensin I; Angiotensin II; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Disease Progression; Female; Heart Failure; Heart Transplantation; Humans; Male; Mass Spectrometry; Middle Aged; Myocardium; Peptide Fragments; Renin-Angiotensin System; Stroke Volume | 2021 |
A Low-Sodium Diet Boosts Ang (1-7) Production and NO-cGMP Bioavailability to Reduce Edema and Enhance Survival in Experimental Heart Failure.
Topics: Angiotensin I; Animals; Biological Availability; Biomarkers; Blood Pressure; Cardiomyopathy, Dilated; Cyclic GMP; Diet, Sodium-Restricted; Edema; Heart Failure; Kidney; Male; Mice, Inbred C57BL; Natriuretic Peptide, Brain; Nitric Oxide; Nitric Oxide Synthase; Peptide Fragments; Phosphoric Diester Hydrolases; Pleural Effusion; Renin-Angiotensin System; Survival Analysis; Systole | 2021 |
Angiotensin-(1-7) in Paraventricular Nucleus Contributes to the Enhanced Cardiac Sympathetic Afferent Reflex and Sympathetic Activity in Chronic Heart Failure Rats.
Topics: Acetophenones; Angiotensin I; Angiotensin II; Animals; Arterial Pressure; Capsaicin; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Cyclic N-Oxides; Heart Failure; Hemodynamics; Kidney; Male; NADPH Oxidases; NG-Nitroarginine Methyl Ester; Paraventricular Hypothalamic Nucleus; Peptide Fragments; Rats; Rats, Sprague-Dawley; Signal Transduction; Spin Labels; Superoxides; Sympathetic Nervous System | 2017 |
Beneficial Effects of Angiotensin-(1-7) on CD34+ Cells From Patients With Heart Failure.
Topics: Angiotensin I; Antigens, CD34; Case-Control Studies; Cell Movement; Cells, Cultured; Female; Heart Failure; Hematopoietic Stem Cells; Humans; Male; Middle Aged; Nitric Oxide; Peptide Fragments; Phenotype; Reactive Oxygen Species; Renin-Angiotensin System | 2018 |
[Role of ACE2-Ang (1-7)-Mas receptor axis in heart failure with preserved ejection fraction with hypertension].
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Atrial Remodeling; Case-Control Studies; Enzyme-Linked Immunosorbent Assay; Heart Failure; Humans; Hypertension; Male; Peptide Fragments; Peptidyl-Dipeptidase A; Random Allocation; Rats; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Stroke Volume; Ventricular Function, Left; Ventricular Remodeling | 2018 |
A Novel Angiotensin-(1-7) Glycosylated Mas Receptor Agonist for Treating Vascular Cognitive Impairment and Inflammation-Related Memory Dysfunction.
Topics: Angiotensin I; Animals; Behavior, Animal; Biomarkers; Brain; Cognitive Dysfunction; Dementia, Vascular; Electrocardiography; Glycosylation; Half-Life; Heart Failure; Human Umbilical Vein Endothelial Cells; Humans; Inflammation; Male; Maze Learning; Memory; Mice; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Receptors, G-Protein-Coupled; Spatial Memory; Ventricular Remodeling | 2019 |
Apelin is a positive regulator of ACE2 in failing hearts.
Topics: Adipokines; Angiotensin I; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Apelin; Apelin Receptors; Feedback, Physiological; Gene Expression Regulation; Heart Failure; Intercellular Signaling Peptides and Proteins; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardial Contraction; Peptide Fragments; Peptidyl-Dipeptidase A; Promoter Regions, Genetic; ras Proteins; Receptor, Angiotensin, Type 1; Receptors, G-Protein-Coupled; Recombinant Fusion Proteins; Renin-Angiotensin System; Signal Transduction | 2013 |
Role of angiotensin-(1-7) and Mas-R-nNOS pathways in amplified neuronal activity of dorsolateral periaqueductal gray after chronic heart failure.
Topics: Angiotensin I; Animals; Chronic Disease; Heart Failure; Male; Neurons; Nitric Oxide Synthase Type I; Peptide Fragments; Periaqueductal Gray; Rats, Sprague-Dawley; Receptors, Angiotensin; Signal Transduction | 2014 |
Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Aorta; Blood Pressure; Cytochrome P-450 Enzyme System; Disease Progression; Enzyme Inhibitors; Epoxide Hydrolases; Fatty Acids, Monounsaturated; Female; Fistula; Heart Failure; Heart Rate; Hemodynamics; Kidney; Male; Peptide Fragments; Rats; Rats, Transgenic; Renin; Renin-Angiotensin System; Solubility; Time Factors; Vena Cava, Inferior | 2015 |
ACE2-Ang (1-7) axis is induced in pressure overloaded rat model.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Blotting, Western; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Heart Failure; Male; Myocardium; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Sprague-Dawley; Real-Time Polymerase Chain Reaction | 2015 |
Inhibition of soluble epoxide hydrolase does not improve the course of congestive heart failure and the development of renal dysfunction in rats with volume overload induced by aorto-caval fistula.
Topics: 8,11,14-Eicosatrienoic Acid; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Benzoates; Disease Models, Animal; Drug Evaluation, Preclinical; Epoxide Hydrolases; Epoxy Compounds; Heart Failure; Kidney; Male; Myocardium; Peptide Fragments; Random Allocation; Rats; Renal Insufficiency; Renin-Angiotensin System; Ultrasonography; Urea | 2015 |
Modulation of cardiac L-type Ca2+ current by angiotensin-(1-7): normal versus heart failure.
Topics: Angiotensin I; Animals; Bradykinin; Calcium Channels, L-Type; Calcium Signaling; Cardiotonic Agents; Disease Models, Animal; Heart Failure; Isoproterenol; Male; Membrane Potentials; Myocytes, Cardiac; Necrosis; Nitric Oxide; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Time Factors; Ventricular Function, Left | 2015 |
ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity.
Topics: Adiponectin; Adipose Tissue; AMP-Activated Protein Kinases; Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Blood Glucose; Blotting, Western; Diet, High-Fat; Enzyme-Linked Immunosorbent Assay; Glucose Intolerance; Heart; Heart Failure; Humans; Inflammation; Insulin Resistance; Macrophages; Mice; Mice, Knockout; Myocardium; Obesity; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Pericardium; Phosphorylation; Real-Time Polymerase Chain Reaction; Stroke Volume; Tumor Necrosis Factor-alpha; Vasodilator Agents; Weight Gain | 2016 |
Serum angiotensin-converting enzyme 2 concentration and angiotensin-(1-7) concentration in patients with acute heart failure patients requiring emergency hospitalization.
Topics: Acute Disease; Adult; Aged; Aldosterone; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Blood Pressure; Case-Control Studies; Emergencies; Female; Heart Failure; Hospitalization; Humans; Japan; Male; Middle Aged; Peptide Fragments; Peptidyl-Dipeptidase A; Regression Analysis; Renin; Renin-Angiotensin System | 2017 |
Cognitive impairment in heart failure: A protective role for angiotensin-(1-7).
Topics: Angiotensin I; Animals; Cognitive Dysfunction; Disease Models, Animal; Heart Failure; Inflammation; Male; Maze Learning; Mice; Mice, Inbred C57BL; Myocardial Infarction; Peptide Fragments; Ventricular Remodeling; Visual Acuity | 2017 |
Angiotensin (1-7) prevent heart dysfunction and left ventricular remodeling caused by renal dysfunction in 5/6 nephrectomy mice.
Topics: Angiotensin I; Animals; Antihypertensive Agents; Blood Pressure; Creatinine; Heart Failure; Heart Ventricles; Kidney; Kidney Failure, Chronic; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Mice; Mice, Inbred C57BL; Myocardium; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Transforming Growth Factor beta; Ventricular Dysfunction, Left; Ventricular Remodeling | 2009 |
Cell swelling, impulse conduction, and cardiac arrhythmias in the failing heart. Opposite effects of angiotensin II and angiotensin (1-7) on cell volume regulation.
Topics: Angiotensin I; Angiotensin II; Animals; Arrhythmias, Cardiac; Cardiomyopathies; Cell Size; Cells, Cultured; Cricetinae; Electrophysiology; Heart Conduction System; Heart Failure; Heart Ventricles; Hypotonic Solutions; Male; Membrane Potentials; Myocytes, Cardiac; Peptide Fragments; Pulse | 2009 |
Circulating rather than cardiac angiotensin-(1-7) stimulates cardioprotection after myocardial infarction.
Topics: Analysis of Variance; Angiotensin I; Angiotensin II; Animals; Bone Marrow Cells; Heart Failure; Hemodynamics; Immunohistochemistry; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardial Infarction; Myocytes, Cardiac; Peptide Fragments; Proto-Oncogene Proteins c-kit; Rats; Rats, Sprague-Dawley; Rats, Wistar; Reverse Transcriptase Polymerase Chain Reaction; Vascular Endothelial Growth Factor A | 2010 |
Enhanced susceptibility to biomechanical stress in ACE2 null mice is prevented by loss of the p47(phox) NADPH oxidase subunit.
Topics: Analysis of Variance; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Cardiomyopathy, Dilated; Disease Models, Animal; Enzyme Activation; Extracellular Matrix; Heart Failure; Male; Matrix Metalloproteinases; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardium; NADPH Oxidases; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Phosphorylation; Stress, Mechanical; Superoxides; Time Factors; Ventricular Function, Left; Ventricular Remodeling | 2011 |
Central angiotensin (1-7) enhances baroreflex gain in conscious rabbits with heart failure.
Topics: Angiotensin I; Angiotensin II; Animals; Antihypertensive Agents; Baroreflex; Chronic Disease; Consciousness; Disease Models, Animal; Heart Failure; Heart Rate; Infusions, Intraventricular; Kidney; Male; Metoprolol; Peptide Fragments; Rabbits; Sympathetic Nervous System; Vagus Nerve | 2011 |
Cardioprotective effects of telmisartan against heart failure in rats induced by experimental autoimmune myocarditis through the modulation of angiotensin-converting enzyme-2/angiotensin 1-7/mas receptor axis.
Topics: Angiotensin I; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Apoptosis; Benzimidazoles; Benzoates; Biomarkers; Cytokines; Disease Models, Animal; Endoplasmic Reticulum; Heart Failure; Male; Mitogen-Activated Protein Kinases; Myocarditis; NADPH Oxidases; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Protective Agents; Protein Subunits; Rats; Signal Transduction; Superoxides; Telmisartan | 2011 |
Regulation of angiotensin-(1-7) and angiotensin II type 1 receptor by telmisartan and losartan in adriamycin-induced rat heart failure.
Topics: Angiotensin I; Angiotensin II Type 1 Receptor Blockers; Animals; Antibiotics, Antineoplastic; Benzimidazoles; Benzoates; Doxorubicin; Gene Expression Regulation; Heart; Heart Failure; Losartan; Male; Myocardium; Peptide Fragments; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Telmisartan | 2011 |
Brain-selective overexpression of angiotensin-converting enzyme 2 attenuates sympathetic nerve activity and enhances baroreflex function in chronic heart failure.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Baroreflex; Enzyme Induction; Heart Failure; Humans; Male; Medulla Oblongata; Mice; Mice, Knockout; Myocardial Ischemia; Nerve Tissue Proteins; Nitric Oxide; Norepinephrine; Organ Specificity; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, Angiotensin; Receptors, G-Protein-Coupled; Recombinant Fusion Proteins; Reflex, Abnormal; Sympathetic Nervous System | 2011 |
Olmesartan attenuates the development of heart failure after experimental autoimmune myocarditis in rats through the modulation of ANG 1-7 mas receptor.
Topics: Angiotensin I; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Apoptosis; Autoimmune Diseases; Cardiotonic Agents; Endoplasmic Reticulum Stress; Heart Failure; Imidazoles; Inflammation; JNK Mitogen-Activated Protein Kinases; Membrane Glycoproteins; Myocarditis; NADPH Oxidase 4; NADPH Oxidases; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Peptide Fragments; Peptidyl-Dipeptidase A; Phosphatidylinositol 3-Kinases; Phosphoproteins; Proto-Oncogene Proteins c-akt; Rats; Rats, Inbred Lew; Receptor, Angiotensin, Type 1; Receptors, Interleukin-1; RNA, Messenger; Tetrazoles | 2012 |
Cardioprotective effects mediated by angiotensin II type 1 receptor blockade and enhancing angiotensin 1-7 in experimental heart failure in angiotensin-converting enzyme 2-null mice.
Topics: Angiotensin I; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Antihypertensive Agents; Biphenyl Compounds; Blood Pressure; Blotting, Western; Cardiotonic Agents; Cells, Cultured; Drug Synergism; Enzyme Activation; Female; Heart; Heart Failure; Irbesartan; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardium; NADPH Oxidases; Peptide Fragments; Peptidyl-Dipeptidase A; Reverse Transcriptase Polymerase Chain Reaction; Superoxides; Systole; Tetrazoles | 2012 |
Angiotensin-(1-7) attenuates the development of heart failure after myocardial infarction in rats.
Topics: Angiotensin I; Angiotensin-Converting Enzyme Inhibitors; Animals; Heart Failure; Humans; Myocardial Infarction; Peptide Fragments; Rats; Vasodilation | 2002 |
Sodium intake influences hemodynamic and neural responses to angiotensin receptor blockade in rostral ventrolateral medulla.
Topics: Angiotensin I; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animals; Antihypertensive Agents; Baroreflex; Benzimidazoles; Biphenyl Compounds; Blood Pressure; Dose-Response Relationship, Drug; Heart Failure; Heart Rate; Hemodynamics; Kidney; Losartan; Male; Medulla Oblongata; Microinjections; Peptide Fragments; Rats; Rats, Sprague-Dawley; Receptors, Angiotensin; Renin; Renin-Angiotensin System; Sodium, Dietary; Sympathetic Nervous System; Tetrazoles | 2001 |
Does angiotensin-(1-7) contribute to cardiac adaptation and preservation of endothelial function in heart failure?
Topics: Adaptation, Physiological; Angiotensin I; Animals; Endothelium, Vascular; Heart; Heart Failure; Myocardial Infarction; Peptide Fragments; Rats; Rats, Inbred Lew; Renin-Angiotensin System | 2002 |
Angiotensin-(1-7) attenuates the development of heart failure after myocardial infarction in rats.
Topics: Angiotensin I; Animals; Aorta; Coronary Circulation; Culture Techniques; Endothelium, Vascular; Heart Failure; Hemodynamics; Infusions, Intravenous; Male; Myocardial Infarction; Peptide Fragments; Rats; Rats, Sprague-Dawley; Vasodilation | 2002 |