Page last updated: 2024-09-03

angiotensin ii, des-phe(8)- and Asthma

angiotensin ii, des-phe(8)- has been researched along with Asthma in 10 studies

Research

Studies (10)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's4 (40.00)24.3611
2020's6 (60.00)2.80

Authors

AuthorsStudies
Ando, Y; Chiba, Y; Hanazaki, M; Ishizaka, S; Ito, M; Sakai, H; Suto, W; Takenoya, F; Torizuka, A; Ueda, C; Watanabe, C; Yamashita, M1
Liu, X; Xu, J; Yu, Z1
Akhtar, S; Babyson, RS; Benter, IF; El-Hashim, AZ; Ezeamuzie, CI; Khajah, MA; Renno, WM1
Barcelos, LS; Baroni, IF; Campagnole-Santos, MJ; Cançado-Ribeiro, ATP; Gregório, JF; Magalhães, GS; Pinho, V; Ramos, KE; Rodrigues-Machado, MG; Santos, RAS; Teixeira, MM1
Chen, M; Guo, Y; Hong, L; Jiang, S; Liu, S; Pan, R; Shi, J; Wang, Q; Yuan, X1
Barcelos, LS; Campagnole-Santos, MJ; Cassini-Vieira, P; Gonzaga, KER; Gregório, JF; Magalhães, GS; Motta-Santos, D; Rodrigues-Machado, MG; Santos, RAS; Vieira, MAR1
Campagnole-Santos, MJ; Carvalho-Ribeiro, IA; Gregório, JF; Magalhães, GS; Nunes, OM; Oliveira, IFA; Rodrigues-Machado, MDG; Santos, RAS; Vasconcellos, AVO1
Barcelos, LS; Barroso, LC; Campagnole-Santos, MJ; Gregório, JF; Magalhaes, GS; Motta-Santos, D; Oliveira, AC; Perez, DA; Pinho, V; Reis, AC; Rodrigues-Machado, MG; Santos, RAS; Teixeira, MM1
Caliari, MV; Campagnole-Santos, MJ; Cara, DC; Cardoso, JA; Kangussu, LM; Lautner, RQ; Magalhães, GS; Marques, FD; Murari, A; Noviello, ML; Oliveira, ML; Pereira, JM; Rodrigues-Machado, MG; Santos, RA1
Abduo, HT; Akhtar, S; Benter, IF; El-Hashim, AZ; Raghupathy, R; Renno, WM1

Reviews

1 review(s) available for angiotensin ii, des-phe(8)- and Asthma

ArticleYear
Asthma: role of the angiotensin-(1-7)/Mas (MAS1) pathway in pathophysiology and therapy.
    British journal of pharmacology, 2021, Volume: 178, Issue:22

    Topics: Angiotensin I; Asthma; Humans; Peptide Fragments; Proto-Oncogene Proteins; Quality of Life; Receptors, G-Protein-Coupled

2021

Other Studies

9 other study(ies) available for angiotensin ii, des-phe(8)- and Asthma

ArticleYear
Altered renin-angiotensin system gene expression in airways of antigen-challenged mice: ACE2 downregulation and unexpected increase in angiotensin 1-7.
    Respiratory physiology & neurobiology, 2023, Volume: 316

    Topics: Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Asthma; COVID-19; Down-Regulation; Gene Expression; Mice; Ovalbumin; Renin-Angiotensin System; SARS-CoV-2

2023
Angiotensin-(1-7) suppresses airway inflammation and airway remodeling via inhibiting ATG5 in allergic asthma.
    BMC pulmonary medicine, 2023, Nov-02, Volume: 23, Issue:1

    Topics: Airway Remodeling; Animals; Asthma; Autophagy-Related Protein 5; Disease Models, Animal; DNA, Complementary; Fibrosis; Humans; Inflammation; Interleukin-13; Lung; Mice; Mice, Inbred BALB C; Ovalbumin; RNA, Small Interfering; Transforming Growth Factor beta1

2023
Ang-(1-7)/ MAS1 receptor axis inhibits allergic airway inflammation via blockade of Src-mediated EGFR transactivation in a murine model of asthma.
    PloS one, 2019, Volume: 14, Issue:11

    Topics: Angiotensin I; Animals; Asthma; Blotting, Western; Bronchoalveolar Lavage Fluid; Chemotaxis, Leukocyte; Disease Models, Animal; ErbB Receptors; Fluorescent Antibody Technique; Lung; Male; Mice; Mice, Inbred BALB C; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Respiratory Hypersensitivity; Signal Transduction; src-Family Kinases

2019
Treatment with inhaled formulation of angiotensin-(1-7) reverses inflammation and pulmonary remodeling in a model of chronic asthma.
    Immunobiology, 2020, Volume: 225, Issue:3

    Topics: Administration, Inhalation; Airway Remodeling; Angiotensin I; Animals; Asthma; Biomarkers; Cytokines; Disease Models, Animal; Immunoglobulin E; Lung; Matrix Metalloproteinases; Mice; Ovalbumin; Peptide Fragments; Vasodilator Agents

2020
Mas receptor activation attenuates allergic airway inflammation via inhibiting JNK/CCL2-induced macrophage recruitment.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2021, Volume: 137

    Topics: Acute Disease; Angiotensin I; Animals; Asthma; Chemokine CCL2; Cytokines; Imidazoles; Inflammation; Macrophage Activation; Macrophages; Male; MAP Kinase Signaling System; Mice; Mice, Inbred BALB C; Ovalbumin; Peptide Fragments; Phosphorylation; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Respiratory System

2021
Angiotensin-(1-7)/Mas receptor modulates anti-inflammatory effects of exercise training in a model of chronic allergic lung inflammation.
    Life sciences, 2021, Oct-01, Volume: 282

    Topics: Angiotensin I; Animals; Asthma; Disease Models, Animal; Exercise Therapy; Male; Mice, Inbred BALB C; Peptide Fragments; Pneumonia

2021
Angiotensin-(1-7) Promotes Resolution of Eosinophilic Inflammation in an Experimental Model of Asthma.
    Frontiers in immunology, 2018, Volume: 9

    Topics: Angiotensin I; Animals; Apoptosis; Asthma; Biomarkers; Bronchoalveolar Lavage Fluid; Caspase 3; Cell Survival; Disease Models, Animal; Eosinophils; Fluorescent Antibody Technique; GATA3 Transcription Factor; Leukocyte Count; Male; Mice; NF-kappa B; NF-KappaB Inhibitor alpha; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled

2018
AVE 0991, a non-peptide mimic of angiotensin-(1-7) effects, attenuates pulmonary remodelling in a model of chronic asthma.
    British journal of pharmacology, 2013, Volume: 170, Issue:4

    Topics: Airway Remodeling; Angiotensin I; Angiotensin II; Animals; Anti-Asthmatic Agents; Asthma; Bronchoalveolar Lavage Fluid; Bronchoconstriction; Chronic Disease; Cytokines; Disease Models, Animal; Hypertrophy, Right Ventricular; Imidazoles; Lung; Male; Mice; Mice, Inbred BALB C; Molecular Mimicry; Ovalbumin; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Pulmonary Artery; Pulmonary Veins; Receptors, G-Protein-Coupled; Time Factors

2013
Angiotensin-(1-7) inhibits allergic inflammation, via the MAS1 receptor, through suppression of ERK1/2- and NF-κB-dependent pathways.
    British journal of pharmacology, 2012, Volume: 166, Issue:6

    Topics: Allergens; Angiotensin I; Angiotensin II; Animals; Asthma; Bronchoalveolar Lavage Fluid; Cell Proliferation; Cells, Cultured; Humans; Leukocytes, Mononuclear; Male; MAP Kinase Signaling System; Mice; Mice, Inbred BALB C; NF-kappa B; Ovalbumin; Peptide Fragments; Phytohemagglutinins; Pneumonia; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled

2012