angiotensin-i and Sleep-Apnea--Obstructive

angiotensin-i has been researched along with Sleep-Apnea--Obstructive* in 1 studies

Other Studies

1 other study(ies) available for angiotensin-i and Sleep-Apnea--Obstructive

ArticleYear
Angiotensin-(1-7) inhibits inflammation and oxidative stress to relieve lung injury induced by chronic intermittent hypoxia in rats.
    Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 2016, Sep-01, Volume: 49, Issue:10

    Obstructive sleep apnea is associated with inflammation and oxidative stress in lung tissues and can lead to metabolic abnormalities. We investigated the effects of angiotensin1-7 [Ang-(1-7)] on lung injury in rats induced by chronic intermittent hypoxia (CIH). We randomly assigned 32 male Sprague-Dawley rats (180-200 g) to normoxia control (NC), CIH-untreated (uCIH), Ang-(1-7)-treated normoxia control (N-A), and Ang-(1-7)-treated CIH (CIH-A) groups. Oxidative stress biomarkers were measured in lung tissues, and expression of NADPH oxidase 4 (Nox4) and Nox subunits (p22phox, and p47phox) was determined by Western blot and reverse transcription-polymerase chain reaction. Pulmonary pathological changes were more evident in the uCIH group than in the other groups. Enzyme-linked immunosorbent assays and immunohistochemical staining showed that inflammatory factor concentrations in serum and lung tissues in the uCIH group were significantly higher than those in the NC and N-A groups. Expression of inflammatory factors was significantly higher in the CIH-A group than in the NC and N-A groups, but was lower than in the uCIH group (P<0.01). Oxidative stress was markedly higher in the uCIH group than in the NC and N-A groups. Expression of Nox4 and its subunits was also increased in the uCIH group. These changes were attenuated upon Ang-(1-7) treatment. In summary, treatment with Ang-(1-7) reversed signs of CIH-induced lung injury via inhibition of inflammation and oxidative stress.

    Topics: Angiotensin I; Animals; Blotting, Western; Cytokines; Enzyme-Linked Immunosorbent Assay; Hypoxia; Immunohistochemistry; Inflammation; Lung; Lung Injury; Male; Malondialdehyde; Oxidative Stress; Peptide Fragments; Protective Agents; Random Allocation; Rats, Sprague-Dawley; Reproducibility of Results; Reverse Transcriptase Polymerase Chain Reaction; Sleep Apnea, Obstructive; Vasodilator Agents

2016