angiotensin-i and Sarcopenia

angiotensin-i has been researched along with Sarcopenia* in 2 studies

Other Studies

2 other study(ies) available for angiotensin-i and Sarcopenia

ArticleYear
Combined Administration of Andrographolide and Angiotensin- (1-7) Synergically Increases the Muscle Function and Strength in Aged Mice.
    Current molecular medicine, 2022, Volume: 22, Issue:10

    Sarcopenia is a progressive and generalized skeletal muscle disorder characterized by muscle weakness, loss of muscle mass, and decline in the capacity of force generation. Aging can cause sarcopenia. Several therapeutic strategies have been evaluated to prevent or alleviate this disorder. One of them is angiotensin 1-7 [Ang-(1-7)], an anti-atrophic peptide for skeletal muscles that regulates decreased muscle mass for several causes, including aging. Another regulator of muscle mass and function is andrographolide, a bicyclic diterpenoid lactone that decreases the nuclear factor kappa B (NF-κB) signaling and attenuates the severity of some muscle diseases.. Evaluate the effect of combined administration of Ang-(1-7) with andrographolide on the physical performance, muscle strength, and fiber´s diameter in a murine model of sarcopenia by aging.. Aged male mice of the C57BL/6J strain were treated with Andrographolide, Ang-(1-7), or combined for three months. The physical performance, muscle strength, and fiber´s diameter were measured.. The results showed that aged mice (24 months old) treated with Ang-(1-7) or Andrographolide improved their performance on a treadmill test, muscle strength, and their fiber´s diameter compared to aged mice without treatment. The combined administration of Ang-(1-7) with andrographolide to aged mice has an enhanced synergically effect on physical performance, muscle strength, and fiber´s diameter.. Our results indicated that in aged mice, the effects of andrographolide and Ang-(1-7) on muscle function, strength, and fiber´s diameter are potentiated.

    Topics: Angiotensin I; Animals; Diterpenes; Male; Mice; Mice, Inbred C57BL; Muscle, Skeletal; Muscular Diseases; Peptide Fragments; Sarcopenia

2022
Protective Effect of Angiotensin 1-7 on Sarcopenia Induced by Chronic Liver Disease in Mice.
    International journal of molecular sciences, 2020, May-29, Volume: 21, Issue:11

    Sarcopenia associated with chronic liver disease (CLD) is one of the more common extrahepatic features in patients with these pathologies. Among the cellular alterations observed in the muscle tissue under CLD is the decline in the muscle strength and function, as well as the increased fatigue. Morphological changes, such as a decrease in the fiber diameter and transition in the fiber type, are also reported. At the molecular level, sarcopenia for CLD is characterized by: i) a decrease in the sarcomeric protein, such as myosin heavy chain (MHC); ii) an increase in the ubiquitin-proteasome system markers, such as atrogin-1/MAFbx1 and MuRF-1/TRIM63; iii) an increase in autophagy markers, such as LC3II/LC3I ratio. Among the regulators of muscle mass is the renin-angiotensin system (RAS). The non-classical axis of RAS includes the Angiotensin 1-7 [Ang-(1-7)] peptide and its receptor Mas, which in skeletal muscle has anti-atrophic effect in models of muscle wasting induced by immobilization, lipopolysaccharide, myostatin or angiotensin II. In this paper, we evaluated the effect of Ang-(1-7) on the sarcopenia by CLD in a murine model induced by the 5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) hepatotoxin administered through diet. Our results show that Ang-(1-7) administration prevented the decline of the function and strength of muscle and increased the fatigue detected in the DDC-fed mice. Besides, we observed that the decreased fiber diameter and MHC levels, as well as the transition of fiber types, were all abolished by Ang-(1-7) in mice fed with DDC. Finally, Ang-(1-7) can decrease the atrogin-1 and MuRF-1 expression as well as the autophagy marker in mice treated with DDC. Together, our data support the protective role of Ang-(1-7) on the sarcopenia by CLD in mice.

    Topics: Angiotensin I; Animals; Autophagy; Biomarkers; Chronic Disease; Fibrosis; Liver Diseases; Male; Mice; Mice, Inbred C57BL; Muscle Fibers, Skeletal; Muscle Proteins; Muscle Strength; Muscle, Skeletal; Muscular Atrophy; Peptide Fragments; Proteasome Endopeptidase Complex; Sarcopenia; SKP Cullin F-Box Protein Ligases; Tripartite Motif Proteins; Ubiquitin; Ubiquitin-Protein Ligases

2020