angiotensin-i has been researched along with Pneumonia* in 11 studies
11 other study(ies) available for angiotensin-i and Pneumonia
Article | Year |
---|---|
Angiotensin-(1-7)/Mas receptor modulates anti-inflammatory effects of exercise training in a model of chronic allergic lung inflammation.
Exercise training increases circulating and tissue levels of angiotensin-(1-7) [Ang-(1-7)], which was shown to attenuate inflammation and fibrosis in different diseases. Here, we evaluated whether Ang-(1-7)/Mas receptor is involved in the beneficial effects of aerobic training in a chronic model of asthma.. BALB/c mice were subjected to a protocol of asthma induced by ovalbumin sensitization (OVA; 4 i.p. injections) and OVA challenge (3 times/week for 4 weeks). Simultaneously to the challenge period, part of the animals was continuously treated with Mas receptor antagonist (A779, 1 μg/h; for 28 days) and trained in a treadmill (TRE; 60% of the maximal capacity, 1 h/day, 5 days/week during 4 weeks). PGC1-α mRNA expression (qRT-PCR), plasma IgE and lung cytokines (ELISA), inflammatory cells infiltration (enzymatic activity assay) and airway remodeling (by histology) were evaluated.. Blocking the Mas receptor with A779 increased IgE and IL-13 levels and prevented the reduction in extracellular matrix deposition in airways in OVA-TRE mice. Mas receptor blockade prevented the reduction of myeloperoxidase activity, as well as, prevented exercise-induced IL-10 increase. These data show that activation of Ang-(1-7)/Mas receptor pathway is involved in the anti-inflammatory and anti-fibrotic effects of aerobic training in an experimental model of chronic asthma.. Our results support exercise training as a non-pharmacological tool to defeat lung remodeling induced by chronic pulmonary inflammation. Further, our result also supports development of new therapy based on Ang-(1-7) or Mas agonists as important tool for asthma treatment in those patients that cannot perform aerobic training. Topics: Angiotensin I; Animals; Asthma; Disease Models, Animal; Exercise Therapy; Male; Mice, Inbred BALB C; Peptide Fragments; Pneumonia | 2021 |
Chronic allergic pulmonary inflammation is aggravated in angiotensin-(1-7) Mas receptor knockout mice.
The angiotensin-(1-7) [ANG-(1-7)]/Mas receptor pathway is currently recognized as a counterbalancing mechanism of the renin-angiotensin system in different pathophysiological conditions. We have previously described that treatment with ANG-(1-7) attenuates lung inflammation and remodeling in an experimental model of asthma. In the present study, we investigated whether lack of the Mas receptor could alter the inflammatory response in a model of chronic allergic lung inflammation induced by ovalbumin (OVA). Mas receptor wild-type (MasWT) and knockout (MasKO) mice were subjected to four doses of OVA (20 μg/mice ip) with a 14-day interval. At the 21st day, nebulization with OVA (1%) was started, three times per week until the 46th day. Control groups received saline (0.9% ip) and were nebulized with saline (0.9%). MasWT-OVA developed a modest inflammatory response and minor pulmonary remodeling to OVA challenge. Strikingly, MasKO-OVA presented a significant increase in inflammatory cell infiltrate, increase in extracellular matrix deposition, increase in thickening of the alveolar parenchyma, increase in thickening of the smooth muscle layer of the pulmonary arterioles, increase in proinflammatory cytokine and chemokine levels in the lungs, characteristic of chronic asthma. Additionally, MasKO-OVA presented an increase in ERK1/2 phosphorylation compared with MasWT-OVA. Furthermore, MasKO-OVA showed a worse performance in a test of maximum physical exercise compared with MasWT-OVA. Our study shows that effects triggered by the Mas receptor are important to attenuate the inflammatory and remodeling processes in a model of allergic lung inflammation in mice. Our data indicate that impairment of the ANG-(1-7)/Mas receptor pathway may lead to worsening of the pathophysiological changes of asthma. Topics: Angiotensin I; Animals; Bronchoalveolar Lavage Fluid; Cytokines; Extracellular Signal-Regulated MAP Kinases; Hypersensitivity; Lung; Mice, Knockout; Peptide Fragments; Physical Conditioning, Animal; Pneumonia; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Swimming | 2016 |
Angiotensin-(1-7) attenuates airway remodelling and hyperresponsiveness in a model of chronic allergic lung inflammation.
A long-term imbalance between pro- and anti-inflammatory mediators leads to airway remodelling, which is strongly correlated to most of the symptoms, severity and progression of chronic lung inflammation. The Angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis of the renin-angiotensin system is associated with attenuation of acute and chronic inflammatory processes. In this study, we investigated the effects of Ang-(1-7) treatment in a model of chronic allergic lung inflammation.. Mice were sensitized to ovalbumin (OVA; 4 injections over 42 days, 14 days apart) and were challenged three times per week (days 21-46). These mice received Ang-(1-7) (1 μg·h(-1) , s.c.) by osmotic mini-pumps, for the last 28 days. Histology and morphometric analysis were performed in left lung and right ventricle. Airway responsiveness to methacholine, analysis of Ang-(1-7) levels (RIA), collagen I and III (qRT-PCR), ERK1/2 and JNK (Western blotting), IgE (elisa), cytokines and chemokines (elisa multiplex), and immunohistochemistry for Mas receptors were performed.. Infusion of Ang-(1-7) in OVA-sensitized and challenged mice decreased inflammatory cell infiltration and collagen deposition in the airways and lung parenchyma, and prevented bronchial hyperresponsiveness. These effects were accompanied by decreased IgE and ERK1/2 phosphorylation, and decreased pro-inflammatory cytokines. Mas receptors were detected in the epithelium and bronchial smooth muscle, suggesting a site in the lung for the beneficial actions of Ang-(1-7).. Ang-(1-7) exerted beneficial attenuation of three major features of chronic asthma: lung inflammation, airway remodelling and hyperresponsiveness. Our results support an important protective role of Ang-(1-7) in lung inflammation. Topics: Airway Remodeling; Angiotensin I; Animals; Anti-Inflammatory Agents; Bronchial Hyperreactivity; Bronchoconstriction; Collagen; Cytokines; Disease Models, Animal; Hypertrophy, Right Ventricular; Immunoglobulin E; Inflammation Mediators; Lung; Male; Mice, Inbred BALB C; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Ovalbumin; Peptide Fragments; Phosphorylation; Pneumonia; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Respiratory Hypersensitivity; Signal Transduction | 2015 |
Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-κB pathway.
Accumulating evidence has demonstrated that up-regulation of the angiotensin (Ang)-converting enzyme (ACE)/AngII/AngII type 1 receptor (AT1R) axis aggravates pulmonary fibrosis. The recently discovered ACE2/Ang-(1-7)/Mas axis, which counteracts the activity of the ACE/AngII/AT1R axis, has been shown to protect against pulmonary fibrosis. However, the mechanisms by which ACE2 and Ang-(1-7) attenuate pulmonary fibrosis remain unclear. We hypothesized that up-regulation of the ACE2/Ang-(1-7)/Mas axis protects against bleomycin (BLM)-induced pulmonary fibrosis by inhibiting the mitogen-activated protein kinase (MAPK)/NF-κB pathway. In vivo, Ang-(1-7) was continuously infused into Wistar rats that had received BLM or AngII. In vitro, human fetal lung-1 cells were pretreated with compounds that block the activities of AT1R, Mas (A-779), and MAPKs before exposure to AngII or Ang-(1-7). The human fetal lung-1 cells were infected with lentivirus-mediated ACE2 before exposure to AngII. In vivo, Ang-(1-7) prevented BLM-induced lung fibrosis and AngII-induced lung inflammation by inhibiting the MAPK phosphorylation and NF-κB signaling cascades. However, exogenous Ang-(1-7) alone clearly promoted lung inflammation. In vitro, Ang-(1-7) and lentivirus-mediated ACE2 inhibited the AngII-induced MAPK/NF-κB pathway, thereby attenuating inflammation and α-collagen I production, which could be reversed by the Mas inhibitor, A-779. Ang-(1-7) inhibited AngII-induced lung fibroblast apoptotic resistance via inhibition of the MAPK/NF-κB pathway and activation of the BCL-2-associated X protein/caspase-dependent mitochondrial apoptotic pathway. Ang-(1-7) alone markedly stimulated extracellular signal-regulated protein kinase 1/2 phosphorylation and the NF-κB cascade. Up-regulation of the ACE2/Ang-(1-7)/Mas axis protected against pulmonary fibrosis by inhibiting the MAPK/NF-κB pathway. However, close attention should be paid to the proinflammatory effects of Ang-(1-7). Topics: Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Apoptosis; bcl-X Protein; Bleomycin; Cells, Cultured; Collagen Type I; Disease Models, Animal; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Fibroblasts; Humans; Infusions, Subcutaneous; Lung; Male; MAP Kinase Signaling System; NF-kappa B; Peptide Fragments; Peptidyl-Dipeptidase A; Phosphorylation; Pneumonia; Protein Kinase Inhibitors; Proto-Oncogene Mas; Proto-Oncogene Proteins; Pulmonary Fibrosis; Rats; Rats, Wistar; Receptors, G-Protein-Coupled | 2014 |
Agonists of MAS oncogene and angiotensin II type 2 receptors attenuate cardiopulmonary disease in rats with neonatal hyperoxia-induced lung injury.
Stimulation of MAS oncogene receptor (MAS) or angiotensin (Ang) receptor type 2 (AT2) may be novel therapeutic options for neonatal chronic lung disease (CLD) by counterbalancing the adverse effects of the potent vasoconstrictor angiotensin II, consisting of arterial hypertension (PAH)-induced right ventricular hypertrophy (RVH) and pulmonary inflammation. We determined the cardiopulmonary effects in neonatal rats with CLD of daily treatment during continuous exposure to 100% oxygen for 10 days with specific ligands for MAS [cyclic Ang-(1-7); 10-50 μg·kg(-1)·day(-1)] and AT2 [dKcAng-(1-7); 5-20 μg·kg(-1)·day(-1)]. Parameters investigated included lung and heart histopathology, fibrin deposition, vascular leakage, and differential mRNA expression in the lungs of key genes involved in the renin-angiotensin system, inflammation, coagulation, and alveolar development. We investigated the role of nitric oxide synthase inhibition with N(ω)-nitro-l-arginine methyl ester (25 mg·kg(-1)·day(-1)) during AT2 agonist treatment. Prophylactic treatment with agonists for MAS or AT2 for 10 days diminished cardiopulmonary injury by reducing alveolar septum thickness and medial wall thickness of small arterioles and preventing RVH. Both agonists attenuated the pulmonary influx of inflammatory cells, including macrophages (via AT2) and neutrophils (via MAS) but did not reduce alveolar enlargement and vascular alveolar leakage. The AT2 agonist attenuated hyperoxia-induced fibrin deposition. In conclusion, stimulation of MAS or AT2 attenuates cardiopulmonary injury by reducing pulmonary inflammation and preventing PAH-induced RVH but does not affect alveolar and vascular development in neonatal rats with experimental CLD. The beneficial effects of AT2 activation on experimental CLD were mediated via a NOS-independent mechanism. Topics: Angiotensin I; Animals; Animals, Newborn; Apoptosis; Blotting, Western; Bronchoalveolar Lavage; Cell Proliferation; Hyperoxia; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Lung Injury; Male; Oxygen; Peptide Fragments; Pneumonia; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Wistar; Real-Time Polymerase Chain Reaction; Receptor, Angiotensin, Type 2; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger | 2013 |
Angiotensin-(1-7) inhibits allergic inflammation, via the MAS1 receptor, through suppression of ERK1/2- and NF-κB-dependent pathways.
BACKGROUND AND PURPOSE Angiotensin-(1-7) [Ang-(1-7)] has anti-inflammatory effects in models of cardiovascular disease and arthritis, but its effects in asthma are unknown. We investigated whether Ang-(1-7) has anti-inflammatory actions in a murine model of asthma. EXPERIMENTAL APPROACH The effects of Ang-(1-7) alone or in combination with the MAS1 receptor antagonist, A779, were evaluated over a 4 day period in an ovalbumin-challenged mouse model of allergic asthma. On day 5, bronchoalveolar lavage was performed, and lungs were sectioned and assessed histologically for quantification of goblet cells, perivascular and peribronchial inflammation and fibrosis. Biochemical analysis of the pro-inflammatory ERK1/2 and IκB-α was assessed. In addition, the effect of Ang-(1-7) on proliferation of human peripheral blood mononuclear cells (HPBMC) was investigated. KEY RESULTS Ang-(1-7) attenuated ovalbumin-induced increases in total cell counts, eosinophils, lymphocytes and neutrophils. Ang-(1-7) also decreased the ovalbumin-induced perivascular and peribronchial inflammation, fibrosis and goblet cell hyper/metaplasia. Additionally, Ang-(1-7) reduced the ovalbumin-induced increase in the phosphorylation of ERK1/2 and IκB-α. These effects of Ang-(1-7) were reversed by the MAS1 receptor antagonist A779. Furthermore, Ang-(1-7) inhibited phytohaemagglutinin (PHA)-induced HPBMC proliferation. CONCLUSION AND IMPLICATIONS Ang-(1-7), via its MAS1 receptor, acts as an anti-inflammatory pathway in allergic asthma, implying that activation of the MAS1 receptor may represent a novel approach to asthma therapy. Topics: Allergens; Angiotensin I; Angiotensin II; Animals; Asthma; Bronchoalveolar Lavage Fluid; Cell Proliferation; Cells, Cultured; Humans; Leukocytes, Mononuclear; Male; MAP Kinase Signaling System; Mice; Mice, Inbred BALB C; NF-kappa B; Ovalbumin; Peptide Fragments; Phytohemagglutinins; Pneumonia; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled | 2012 |
Renin-angiotensin system in sepsis.
The time course of the components of the renin-angiotensin system was investigated in the plasma of three patients on the intensive care unit. Two of them, which were both polytraumatized, suffered from adult respiratory distress syndrome (ARDS). All patients had sepsis and impaired pulmonary and renal function. Plasma samples were investigated for up to two weeks, in which time all three patients showed a decrease in their angiotensin converting enzyme (ACE) plasma concentration. Two of the patients with deteriorating renal function had three to four times elevated angiotensinogen (Ao) plasma levels, which were measured by both the direct and indirect radioimmunoassay. The ratio of the mean values between both assays was 1:1 in two patients and shifted to higher values in the direct assay in the third patient. This suggests that higher amounts of des-AngI-angiotensinogen were present in the latter patient, because "inactive" Ao is also detected by the direct assay. The decrease in active Ao may be caused by an up to twenty times elevated plasma renin activity (PRA). The PRA was correlated with the angiotensin I (AngI) plasma levels. However, at PRA values higher than 200 pmol AngI/ml/h this correlation decreased because of the rapid substrate consumption. In addition there was a good correlation between AngI and AngII plasma levels in two patients which could not be observed in the patient with the highest PRA and AngII values. A relationship between plasma ACE concentration and AngII formation could not be observed. Thus in two of the three septic patients the components of the renin angiotensin system were extremely stimulated at very low blood pressure values. These data show, that it is reasonable to follow the time course of the components of the renin angiotensin system in single patients. In addition it is demonstrated that the direct measurement of Ao is a valid supplement in the diagnosis of the renin angiotensin system. Topics: Acute Kidney Injury; Angiotensin I; Angiotensin II; Epinephrine; Furosemide; Humans; Multiple Trauma; Peptidyl-Dipeptidase A; Pneumonia; Renin; Renin-Angiotensin System; Respiratory Distress Syndrome; Sepsis | 1987 |
The pulmonary endothelial surface.
The understanding of endothelial metabolic properties has increased dramatically in recent years. Endothelial cells (ECs) process hormones, drugs, and many blood-borne substances by means of enzymes and transport processes. In turn, some hormones, blood cells, and cellular products interact with ECs via specific receptors on the luminal surface. Functional complexity is exemplified by the metabolism of the adenine nucleotides. ATP, ADP, and AMP are metabolized by enzymes of the endothelial surface to release adenosine, which may be immediately taken up into endothelium and reincorporated intracellularly into nucleotides. Equally complex is the metabolism of the kinins and angiotensins by ECs. Bradykinin is inactivated whereas angiotensin I is converted to angiotensin II. Bradykinin not thus degraded can act on endothelial receptors and stimulate the release of prostacyclin (PGI2). Thus bradykinin can amplify the release of another vasodilator, PGI2, and can stimulate the release of a powerful antiaggregatory agent (PGI2). Many of these complex metabolic reactions occur at the endothelial surface, a structure that is itself complex. ECs possess endothelial projections and caveolae as well as a fuzzy coat, or glycocalyx. Functions of the endothelial glycocalyx are not well understood, but the glycocalyx can now be visualized: it may act as a molecular sieve and provide a substratum for the initiation and progression of immunologic reactions. Topics: Adenosine Diphosphate; Adenosine Monophosphate; Adenosine Triphosphate; Angiotensin I; Angiotensin II; Animals; Bradykinin; Endothelium; Epoprostenol; Lung; Microscopy, Electron; Pneumonia; Rabbits | 1985 |
[Angiotensin I-converting enzyme activity in serum and in the lung of rabbits with experimental pneumonitis (author's transl)].
Topics: Angiotensin I; Animals; In Vitro Techniques; Lung; Peptidyl-Dipeptidase A; Pneumonia; Rabbits | 1979 |
Characterization and physiological role of angiotensin converting enzyme in rabbits lung.
Topics: Angiotensin I; Animals; Blood Pressure; Bradykinin; Chromatography, Gel; Electrophoresis, Polyacrylamide Gel; Enzyme Activation; Female; Lung; Peptidyl-Dipeptidase A; Pneumonia; Rabbits; Rats | 1979 |
Characterization and physiological role of angiotensin converting enzyme in rabbits lung.
Topics: Angiotensin I; Animals; Bradykinin; In Vitro Techniques; Lung; Peptidyl-Dipeptidase A; Pneumonia; Pulmonary Circulation; Rabbits | 1979 |