angiotensin-i and Muscular-Atrophy

angiotensin-i has been researched along with Muscular-Atrophy* in 10 studies

Reviews

2 review(s) available for angiotensin-i and Muscular-Atrophy

ArticleYear
Muscle wasting: A review of exercise, classical and non-classical RAS axes.
    Journal of cellular and molecular medicine, 2019, Volume: 23, Issue:9

    This review identifies how the classical/non-classical renin-angiotensin system (RAS) and exercise influence muscle wasting. The classical RAS axis enhances muscle loss through the interaction with NADPH oxidase (NOX), ubiquitin proteasome system (UPS), protein synthesis and fibrosis pathways. The mainstream hypothesis identifies reactive oxygen species (ROS) as the key pathway in muscle, this review recognizes alternative pathways that lead to an increase in muscle wasting through the classical RAS axis. In addition, pathways in which the non-classical RAS axis and exercise inhibit the classical RAS axis are also explored. The non-classical RAS axis and exercise have a significant negative impact on ROS production and protein synthesis. The non-classical RAS axis has been identified in this review to directly affect protein synthesis pathways not by altering the pre-existing intracellular ROS level, further supporting the idea that muscle wasting caused by the classical RAS system is not entirely due to ROS production. Exercise has been identified to modify the RAS axes making it a therapeutic option.

    Topics: Angiotensin I; Angiotensin II; Apoptosis; Exercise; Fibrosis; Humans; Mitochondria; Muscle, Skeletal; Muscular Atrophy; NADPH Oxidases; Peptide Fragments; Protein Biosynthesis; Reactive Oxygen Species; Renin-Angiotensin System; Ubiquitin-Protein Ligases

2019
Skeletal muscle wasting: new role of nonclassical renin-angiotensin system.
    Current opinion in clinical nutrition and metabolic care, 2017, Volume: 20, Issue:3

    Skeletal muscle can be affected by many physiological and pathological conditions that contribute to the development of muscle weakness, including skeletal muscle loss, inflammatory processes, or fibrosis. Therefore, research into therapeutic treatment alternatives or alleviation of these effects on skeletal muscle is of great importance.. Recent studies have shown that angiotensin (1-7) [Ang-(1-7)] - a vasoactive peptide of the nonclassical axis in the renin-angiotensin system (RAS) - and its Mas receptor are expressed in skeletal muscle. Ang-(1-7), through its Mas receptor, prevents or diminishes deleterious effects induced by skeletal muscle disease or injury. Specifically, the Ang-(1-7)-Mas receptor axis modulates molecular mechanisms involved in muscle mass regulation, such as the ubiquitin proteasome pathway, the insulin-like growth factor type 1/Akt (protein kinase B) pathway, or myonuclear apoptosis, and also inflammation and fibrosis pathways.. Although further research into this topic and the possible side effects of Ang-(1-7) is necessary, these findings are promising, and suggest that the Ang-(1-7)-Mas axis can be considered a possible therapeutic target for treating patients with muscular disorders.

    Topics: Angiotensin I; Humans; Muscle, Skeletal; Muscular Atrophy; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Signal Transduction

2017

Other Studies

8 other study(ies) available for angiotensin-i and Muscular-Atrophy

ArticleYear
Protective Effect of Angiotensin 1-7 on Sarcopenia Induced by Chronic Liver Disease in Mice.
    International journal of molecular sciences, 2020, May-29, Volume: 21, Issue:11

    Sarcopenia associated with chronic liver disease (CLD) is one of the more common extrahepatic features in patients with these pathologies. Among the cellular alterations observed in the muscle tissue under CLD is the decline in the muscle strength and function, as well as the increased fatigue. Morphological changes, such as a decrease in the fiber diameter and transition in the fiber type, are also reported. At the molecular level, sarcopenia for CLD is characterized by: i) a decrease in the sarcomeric protein, such as myosin heavy chain (MHC); ii) an increase in the ubiquitin-proteasome system markers, such as atrogin-1/MAFbx1 and MuRF-1/TRIM63; iii) an increase in autophagy markers, such as LC3II/LC3I ratio. Among the regulators of muscle mass is the renin-angiotensin system (RAS). The non-classical axis of RAS includes the Angiotensin 1-7 [Ang-(1-7)] peptide and its receptor Mas, which in skeletal muscle has anti-atrophic effect in models of muscle wasting induced by immobilization, lipopolysaccharide, myostatin or angiotensin II. In this paper, we evaluated the effect of Ang-(1-7) on the sarcopenia by CLD in a murine model induced by the 5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) hepatotoxin administered through diet. Our results show that Ang-(1-7) administration prevented the decline of the function and strength of muscle and increased the fatigue detected in the DDC-fed mice. Besides, we observed that the decreased fiber diameter and MHC levels, as well as the transition of fiber types, were all abolished by Ang-(1-7) in mice fed with DDC. Finally, Ang-(1-7) can decrease the atrogin-1 and MuRF-1 expression as well as the autophagy marker in mice treated with DDC. Together, our data support the protective role of Ang-(1-7) on the sarcopenia by CLD in mice.

    Topics: Angiotensin I; Animals; Autophagy; Biomarkers; Chronic Disease; Fibrosis; Liver Diseases; Male; Mice; Mice, Inbred C57BL; Muscle Fibers, Skeletal; Muscle Proteins; Muscle Strength; Muscle, Skeletal; Muscular Atrophy; Peptide Fragments; Proteasome Endopeptidase Complex; Sarcopenia; SKP Cullin F-Box Protein Ligases; Tripartite Motif Proteins; Ubiquitin; Ubiquitin-Protein Ligases

2020
The complex of PAMAM-OH dendrimer with Angiotensin (1-7) prevented the disuse-induced skeletal muscle atrophy in mice.
    International journal of nanomedicine, 2017, Volume: 12

    Angiotensin (1-7) (Ang-(1-7)) is a bioactive heptapeptide with a short half-life and has beneficial effects in several tissues - among them, skeletal muscle - by preventing muscle atrophy. Dendrimers are promising vehicles for the protection and transport of numerous bioactive molecules. This work explored the use of a neutral, non-cytotoxic hydroxyl-terminated poly(amidoamine) (PAMAM-OH) dendrimer as an Ang-(1-7) carrier. Bioinformatics analysis showed that the Ang-(1-7)-binding capacity of the dendrimer presented a 2:1 molar ratio. Molecular dynamics simulation analysis revealed the capacity of neutral PAMAM-OH to protect Ang-(1-7) and form stable complexes. The peptide coverage ability of the dendrimer was between ~50% and 65%. Furthermore, an electrophoretic mobility shift assay demonstrated that neutral PAMAM-OH effectively bonded peptides. Experimental results showed that the Ang-(1-7)/PAMAM-OH complex, but not Ang-(1-7) alone, had an anti-atrophic effect when administered intraperitoneally, as evaluated by muscle strength, fiber diameter, myofibrillar protein levels, and atrogin-1 and MuRF-1 expressions. The results of the Ang-(1-7)/PAMAM-OH complex being intraperitoneally injected were similar to the results obtained when Ang-(1-7) was systemically administered through mini-osmotic pumps. Together, the results suggest that Ang-(1-7) can be protected for PAMAM-OH when this complex is intraperitoneally injected. Therefore, the Ang-(1-7)/PAMAM-OH complex is an efficient delivery method for Ang-(1-7), since it improves the anti-atrophic activity of this peptide in skeletal muscle.

    Topics: Angiotensin I; Animals; Dendrimers; Electrophoretic Mobility Shift Assay; Immobilization; Injections, Intraperitoneal; Male; Mice, Inbred C57BL; Molecular Dynamics Simulation; Muscle Proteins; Muscle, Skeletal; Muscular Atrophy; Muscular Disorders, Atrophic; Myosin Heavy Chains; Peptide Fragments; Peptides; SKP Cullin F-Box Protein Ligases; Static Electricity; Tripartite Motif Proteins; Ubiquitin-Protein Ligases

2017
Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas.
    Disease models & mechanisms, 2016, Volume: 9, Issue:4

    Immobilization is a form of disuse characterized by a loss of strength and muscle mass. Among the main features are decreased IGF-1/Akt signalling and increased ubiquitin-proteasome pathway signalling, which induce greater myosin heavy chain degradation. Activation of the classical renin-angiotensin system (RAS) causes deleterious effects in skeletal muscle, including muscle wasting. In contrast, angiotensin-(1-7) [Ang-(1-7)], a peptide of the non-classical RAS, produces beneficial effects in skeletal muscle. However, the role of Ang-(1-7) in skeletal muscle disuse atrophy and independent of classical RAS activation has not been evaluated. Therefore, we assessed the functions of Ang-(1-7) and the Mas receptor in disuse muscle atrophyin vivousing unilateral cast immobilization of the hind limb in male, 12-week-old wild-type (WT) and Mas-knockout (Mas KO) mice for 1 and 14 days. Additionally, we evaluated the participation of IGF-1/IGFR-1/Akt signalling and ubiquitin-proteasome pathway expression on the effects of Ang-(1-7) immobilization-induced muscle atrophy. Our results found that Ang-(1-7) prevented decreased muscle strength and reduced myofiber diameter, myosin heavy chain levels, and the induction of atrogin-1 and MuRF-1 expressions, all of which normally occur during immobilization. Analyses indicated that Ang-(1-7) increases IGF-1/IGFR-1/Akt pathway signalling through IGFR-1 and Akt phosphorylation, and the concomitant activation of two downstream targets of Akt, p70S6K and FoxO3. These anti-atrophic effects of Ang-(1-7) were not observed in Mas KO mice, indicating crucial participation of the Mas receptor. This report is the first to propose anti-atrophic effects of Ang-(1-7) via the Mas receptor and the participation of the IGF-1/IGFR-1/Akt/p70S6K/FoxO3 mechanism in disuse skeletal muscle atrophy.

    Topics: Angiotensin I; Animals; Insulin-Like Growth Factor I; Isometric Contraction; Male; Mice; Mice, Inbred C57BL; Muscle Fibers, Skeletal; Muscle Proteins; Muscle Strength; Muscular Atrophy; Muscular Disorders, Atrophic; Myosin Heavy Chains; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Receptor, IGF Type 1; Receptors, G-Protein-Coupled; Signal Transduction; SKP Cullin F-Box Protein Ligases; Tripartite Motif Proteins; Ubiquitin-Protein Ligases

2016
Angiotensin-(1-7) Prevents Skeletal Muscle Atrophy Induced by Transforming Growth Factor Type Beta (TGF-β) via Mas Receptor Activation.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2016, Volume: 40, Issue:1-2

    Transforming growth factor type beta 1 (TGF-β1) produces skeletal muscle atrophy. Angiotensin-(1-7) (Ang-(1-7)), through the Mas receptor, prevents the skeletal muscle atrophy induced by sepsis, immobilization, or angiotensin II (Ang-II). However, the effect of Ang-(1-7) on muscle wasting induced by TGF-β1 is unknown.. To evaluate whether Ang-(1-7)/Mas receptor axis could prevent the skeletal muscle atrophy induced by TGF-β1.. This study assessed the atrophic effect of TGF-β1 in C2C12 myotubes and mice in absence or presence of Ang-(1-7), and the receptor participation using A779, an antagonist of the Mas receptor. The levels of myosin heavy chain (MHC), polyubiquitination, and MuRF-1 were detected by western blot. Myotube diameter was also evaluated. In vivo analysis included the muscle strength, fibre diameter, MHC and MuRF-1 levels by western blot, and ROS levels by DCF probe detection.. The results showed that Ang-(1-7) prevented the increase in MuRF-1 and polyubiquitined protein levels, the decrease of MHC levels, the myotubes/fibre diameter diminution, and the increased production of reactive oxygen species (ROS) induced by TGF-β1. Utilizing A779 inhibited the anti-atrophic effect of Ang-(1-7).. The preventive effect of Ang-(1-7) on skeletal muscle atrophy induced by TGF-β1 is produced through inhibition of ROS production and proteasomal degradation of MHC.

    Topics: Angiotensin I; Animals; Cell Line; Mice, Inbred C57BL; Muscle Fibers, Skeletal; Muscle Proteins; Muscle, Skeletal; Muscular Atrophy; Myosin Heavy Chains; Myosins; Peptide Fragments; Polyubiquitin; Proteasome Endopeptidase Complex; Proto-Oncogene Mas; Proto-Oncogene Proteins; Reactive Oxygen Species; Receptors, G-Protein-Coupled; Transforming Growth Factor beta; Tripartite Motif Proteins; Ubiquitin; Ubiquitin-Protein Ligases; Ubiquitination

2016
Angiotensin-(1-7) decreases skeletal muscle atrophy induced by angiotensin II through a Mas receptor-dependent mechanism.
    Clinical science (London, England : 1979), 2015, Volume: 128, Issue:5

    Skeletal muscle atrophy is a pathological condition characterized by the loss of strength and muscle mass, an increase in myosin heavy chain (MHC) degradation and increase in the expression of two muscle-specific ubiquitin ligases: atrogin-1 and MuRF-1. Angiotensin II (AngII) induces muscle atrophy. Angiotensin-(1-7) [Ang-(1-7)], through its receptor Mas, produces the opposite effects than AngII. We assessed the effects of Ang-(1-7) on the skeletal muscle atrophy induced by AngII. Our results show that Ang-(1-7), through Mas, prevents the effects induced by AngII in muscle gastrocnemius: the decrease in the fibre diameter, muscle strength and MHC levels and the increase in atrogin-1 and MuRF-1. Ang-(1-7) also induces AKT phosphorylation. In addition, our analysis in vitro using C2C12 myotubes shows that Ang-(1-7), through a mechanism dependent on Mas, prevents the decrease in the levels of MHC and the increase in the expression of the atrogin-1 and MuRF-1, both induced by AngII. Ang-(1-7) induces AKT phosphorylation in myotubes; additionally, we demonstrated that the inhibition of AKT with MK-2206 decreases the anti-atrophic effects of Ang-(1-7). Thus, we demonstrate for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by AngII through a mechanism dependent on the Mas receptor, which involves AKT activity. Our study indicates that Ang-(1-7) is novel molecule with a potential therapeutical use to improve muscle wasting associated, at least, with pathologies that present high levels of AngII.

    Topics: Angiotensin I; Angiotensin II; Animals; Cell Line; Gene Expression Regulation; Male; Mice, Inbred C57BL; Muscle Fibers, Skeletal; Muscle Proteins; Muscle Strength; Muscle, Skeletal; Muscular Atrophy; Myosin Heavy Chains; Peptide Fragments; Phosphorylation; Proto-Oncogene Mas; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Receptors, G-Protein-Coupled; Signal Transduction; SKP Cullin F-Box Protein Ligases; Tripartite Motif Proteins; Ubiquitin-Protein Ligases

2015
The angiotensin-(1-7)/Mas axis reduces myonuclear apoptosis during recovery from angiotensin II-induced skeletal muscle atrophy in mice.
    Pflugers Archiv : European journal of physiology, 2015, Volume: 467, Issue:9

    Angiotensin-(1-7) [Ang (1-7)] is a peptide belonging to the non-classical renin-angiotensin system (RAS). Ang (1-7), through its receptor Mas, has an opposite action to angiotensin II (Ang II), the typical peptide of the classical RAS axis. Ang II produces skeletal muscle atrophy, a pathological condition characterised by the loss of strength and muscle mass. A feature of muscle atrophy is the decrease of the myofibrillar proteins produced by the activation of the ubiquitin-proteasome pathway (UPP), evidenced by the increase in the expression of two muscle-specific ubiquitin ligases: atrogin-1 and MuRF-1. In addition, it has been described that Ang II also induces myonuclear apoptosis during muscle atrophy. We assessed the effects of Ang (1-7) and Mas participation on myonuclear apoptosis during skeletal muscle atrophy induced by Ang II. Our results show that Ang (1-7), through Mas, prevents the effects induced by Ang II in the diaphragm muscles and decreases several events associated with apoptosis in the diaphragm (increased apoptotic nuclei, increased expression of caspase-8 and caspase-9, increased caspase-3 activity and increased Bax/Bcl-2 ratio). Concomitantly, Ang (1-7) also attenuates the decrease in fibre diameter and muscle strength, and prevents the increase in atrogin-1 and MuRF-1 during the muscle wasting induced by Ang II. Interestingly, these effects of Ang (1-7) are dependent on the Mas receptor. Thus, we demonstrated for the first time that Ang (1-7) prevents myonuclear apoptosis during the recovery of skeletal muscle atrophy induced by Ang II.

    Topics: Angiotensin I; Angiotensin II; Animals; Apoptosis; Disease Models, Animal; Immunoblotting; In Situ Nick-End Labeling; Male; Mice; Mice, Inbred C57BL; Muscle, Skeletal; Muscular Atrophy; Peptide Fragments; Polymerase Chain Reaction; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled

2015
Angiotensin II can directly induce mitochondrial dysfunction, decrease oxidative fibre number and induce atrophy in mouse hindlimb skeletal muscle.
    Experimental physiology, 2015, Volume: 100, Issue:3

    What is the central question of this study? Does angiotensin II directly induce skeletal muscle abnormalities? What is the main finding and its importance? Angiotensin II induces skeletal muscle abnormalities and reduced exercise capacity. Mitochondrial dysfunction and a decreased number of oxidative fibres are manifest early, while muscle atrophy is seen later. Thus, angiotensin II may play an important role in the skeletal muscle abnormalities observed in a wide variety of diseases. Skeletal muscle abnormalities, such as mitochondrial dysfunction, a decreased percentage of oxidative fibres and atrophy, are the main cause of reduced exercise capacity observed in ageing and various diseases, including heart failure. The renin-angiotensin system, particularly angiotensin II (Ang II), is activated in the skeletal muscle in these conditions. Here, we examined whether Ang II could directly induce these skeletal muscle abnormalities and investigated their time course. Angiotensin II (1000 ng kg(-1)  min(-1) ) or vehicle was administered to male C57BL/6J mice (10-12 weeks of age) via subcutaneously implanted osmotic minipumps for 1 or 4 weeks. Angiotensin II significantly decreased body and hindlimb skeletal muscle weights compared with vehicle at 4 weeks. In parallel, muscle cross-sectional area was also decreased in the skeletal muscle at 4 weeks. Muscle RING finger-1 and atrogin-1 were significantly increased in the skeletal muscle from mice treated with Ang II. In addition, cleaved caspase-3 and terminal deoxynucleotidyl trasferase-mediated dUTP nick-positive nuclei were significantly increased in mice treated with Ang II at 1 and 4 weeks, respectively. Mitochondrial oxidative enzymes, such as citrate synthase, complex I and complex III activities were significantly decreased in the skeletal muscle from mice treated Ang II at 1 and 4 weeks. NAD(P)H oxidase-derived superoxide production was increased. NADH staining revealed that type I fibres were decreased and type IIb fibres increased in mice treated with Ang II at 1 week. The work and running distance evaluated by a treadmill test were significantly decreased in mice treated with Ang II at 4 weeks. Thus, Ang II could directly induce the abnormalities in skeletal muscle function and structure.

    Topics: Angiotensin I; Angiotensin II; Animals; Caspase 3; DNA Nucleotidylexotransferase; Hindlimb; Male; Mice; Mice, Inbred C57BL; Mitochondria; Muscle Fibers, Skeletal; Muscle Proteins; Muscular Atrophy; NADPH Oxidases; Oxidation-Reduction; Renin-Angiotensin System

2015
Endotoxin-induced skeletal muscle wasting is prevented by angiotensin-(1-7) through a p38 MAPK-dependent mechanism.
    Clinical science (London, England : 1979), 2015, Volume: 129, Issue:6

    Skeletal muscle atrophy induced during sepsis syndrome produced by endotoxin in the form of LPS (lipopolysaccharide), is a pathological condition characterized by the loss of strength and muscle mass, an increase in MHC (myosin heavy chain) degradation, and an increase in the expression of atrogin-1 and MuRF-1 (muscle-specific RING-finger protein 1), two ubiquitin E3 ligases belonging to the ubiquitin-proteasome system. Ang-(1-7) [Angiotensin-(1-7)], through its Mas receptor, has beneficial effects in skeletal muscle. We evaluated in vivo the role of Ang-(1-7) and Mas receptor on the muscle wasting induced by LPS injection into C57BL/10J mice. In vitro studies were performed in murine C2C12 myotubes and isolated myofibres from EDL (extensor digitorum longus) muscle. In addition, the participation of p38 MAPK (mitogen-activated protein kinase) in the Ang-(1-7) effect on the LPS-induced muscle atrophy was evaluated. Our results show that Ang-(1-7) prevents the decrease in the diameter of myofibres and myotubes, the decrease in muscle strength, the diminution in MHC levels and the induction of atrogin-1 and MuRF-1 expression, all of which are induced by LPS. These effects were reversed by using A779, a Mas antagonist. Ang-(1-7) exerts these anti-atrophic effects at least in part by inhibiting the LPS-dependent activation of p38 MAPK both in vitro and in vivo. We have demonstrated for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by endotoxin through a mechanism dependent on the Mas receptor that involves a decrease in p38 MAPK phosphorylation. The present study indicates that Ang-(1-7) is a novel molecule with a potential therapeutic use to improve muscle wasting during endotoxin-induced sepsis syndrome.

    Topics: Analysis of Variance; Angiotensin I; Animals; Cells, Cultured; In Vitro Techniques; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Muscle Strength; Muscle, Skeletal; Muscular Atrophy; Myofibrils; p38 Mitogen-Activated Protein Kinases; Peptide Fragments; Random Allocation; Systemic Inflammatory Response Syndrome; Ubiquitin-Protein Ligases; Vasodilator Agents

2015