angiotensin-i and Metabolic-Syndrome

angiotensin-i has been researched along with Metabolic-Syndrome* in 13 studies

Reviews

3 review(s) available for angiotensin-i and Metabolic-Syndrome

ArticleYear
Angiotensin 1-7: a peptide for preventing and treating metabolic syndrome.
    Peptides, 2014, Volume: 59

    Angiotensin-(1-7) is one of the most important active peptides of the renin-angiotensin system (RAS) with recognized cardiovascular relevance; however several studies have shown the potential therapeutic role of Ang-(1-7) on treating and preventing metabolic disorders as well. This peptide achieves a special importance considering that in the last few decades obesity and metabolic syndrome (MS) have become a growing worldwide health problem. Angiotensin (Ang) II is the most studied component of RAS and is increased during obesity, diabetes and dyslipidemia (MS); some experimental evidence has shown that Ang II modulates appetite and metabolism as well as mechanisms that induce adipose tissue growth and metabolism in peripheral organs. Recent articles demonstrated that Ang-(1-7)/Mas axis modulates lipid and glucose metabolism and counterregulates the effects of Ang II. Based on these data, angiotensin-converting enzyme 2 (ACE2)/Ang-(1-7)/Mas pathway activation have been advocated as a new tool for treating metabolic diseases. This review summarizes the new evidence from animal and human experiments indicating the use of Ang-(1-7) in prevention and treatment of obesity and metabolic disorders.

    Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Humans; Metabolic Syndrome; Peptide Fragments; Peptidyl-Dipeptidase A

2014
Angiotensin-(1-7): beyond the cardio-renal actions.
    Clinical science (London, England : 1979), 2013, Volume: 124, Issue:7

    It is well known that the RAS (renin-angiotensin system) plays a key role in the modulation of many functions in the body. AngII (angiotensin II) acting on AT1R (type 1 AngII receptor) has a central role in mediating most of the actions of the RAS. However, over the past 10 years, several studies have presented evidence for the existence of a new arm of the RAS, namely the ACE (angiotensin-converting enzyme) 2/Ang-(1-7) [angiotensin-(1-7)]/Mas axis. Ang-(1-7) can be produced from AngI or AngII via endo- or carboxy-peptidases respectively. ACE2 appears to play a central role in Ang-(1-7) formation. As described for AngII, Ang-(1-7) also has a broad range of effects in different organs and tissues which goes beyond its initially described cardiovascular and renal actions. Those effects are mediated by Mas and can counter-regulate most of the deleterious effects of AngII. The interaction Ang-(1-7)/Mas regulates different signalling pathways, such as PI3K (phosphoinositide 3-kinase)/AKT and ERK (extracellularsignal-regulated kinase) pathways and involves downstream effectors such as NO, FOXO1 (forkhead box O1) and COX-2 (cyclo-oxygenase-2). Through these mechanisms, Ang-(1-7) is able to improve pathological conditions including fibrosis and inflammation in organs such as lungs, liver and kidney. In addition, this heptapeptide has positive effects on metabolism, increasing the glucose uptake and lipolysis while decreasing insulin resistance and dyslipidaemia. Ang-(1-7) is also able to improve cerebroprotection against ischaemic stroke, besides its effects on learning and memory. The reproductive system can also be affected by Ang-(1-7) treatment, with enhanced ovulation, spermatogenesis and sexual steroids synthesis. Finally, Ang-(1-7) is considered a potential anti-cancer treatment since it is able to inhibit cell proliferation and angiogenesis. Thus the ACE2/Ang-(1-7)/Mas pathway seems to be involved in many physiological and pathophysiological processes in several systems and organs especially by opposing the detrimental effects of inappropriate overactivation of the ACE/AngII/AT1R axis.

    Topics: Angiogenesis Inhibitors; Angiotensin I; Animals; Anti-Inflammatory Agents; Antineoplastic Agents; Brain Ischemia; Cell Proliferation; Female; Fibrosis; Glucose; Humans; Insulin; Kidney; Lipid Metabolism; Male; Metabolic Syndrome; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Reproduction; Signal Transduction

2013
The renin-angiotensin system, bone marrow and progenitor cells.
    Clinical science (London, England : 1979), 2012, Aug-01, Volume: 123, Issue:4

    Modulation of the RAS (renin-angiotensin system), in particular of the function of the hormones AngII (angiotensin II) and Ang-(1-7) [angiotensin-(1-7)], is an important target for pharmacotherapy in the cardiovascular system. In the classical view, such modulation affects cardiovascular cells to decrease hypertrophy, fibrosis and endothelial dysfunction, and improves diuresis. In this view, excessive stimulation of AT(1) receptors (AngII type 1 receptors) fulfils a detrimental role, as it promotes cardiovascular pathogenesis, and this is opposed by stimulation of the AT(2) receptor (angiotensin II type 2 receptor) and the Ang-(1-7) receptor encoded by the Mas proto-oncogene. In recent years, this view has been broadened with the observation that the RAS regulates bone marrow stromal cells and stem cells, thus involving haematopoiesis and tissue regeneration by progenitor cells. This change of paradigm has enlarged the field of perspectives for therapeutic application of existing as well as newly developed medicines that alter angiotensin signalling, which now stretches beyond cardiovascular therapy. In the present article, we review the role of AngII and Ang-(1-7) and their respective receptors in haematopoietic and mesenchymal stem cells, and discuss possible pharmacotherapeutical implications.

    Topics: Adipogenesis; Angiotensin I; Angiotensin II; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animals; Bone Marrow; Erythropoiesis; Hematopoiesis; Humans; Kidney; Mesenchymal Stem Cells; Metabolic Syndrome; Myocytes, Cardiac; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Stem Cells; Tetrazoles; Valine; Valsartan

2012

Other Studies

10 other study(ies) available for angiotensin-i and Metabolic-Syndrome

ArticleYear
Improved lipogenesis gene expression in liver is associated with elevated plasma angiotensin 1-7 after AT1 receptor blockade in insulin-resistant OLETF rats.
    Molecular and cellular endocrinology, 2022, 09-15, Volume: 555

    Increased angiotensin II (Ang II) signaling contributes to insulin resistance and liver steatosis. In addition to ameliorating hypertension, angiotensin receptor blockers (ARBs) improve lipid metabolism and hepatic steatosis, which are impaired with metabolic syndrome (MetS). Chronic blockade of the Ang II receptor type 1 (AT1) increases plasma angiotensin 1-7 (Ang 1-7), which mediates mechanisms counterregulatory to AT1 signaling. Elevated plasma Ang 1-7 is associated with decreased plasma triacylglycerol (TAG), cholesterol, glucose, and insulin; however, the benefits of RAS modulation to prevent non-alcoholic fatty liver disease (NAFLD) are not fully investigated. To better address the relationships among chronic ARB treatment, plasma Ang 1-7, and hepatic steatosis, three groups of 10-week-old-rats were studied: (1) untreated lean Long Evans Tokushima Otsuka (LETO), (2) untreated Otsuka Long Evans Tokushima Fatty (OLETF), and (3) OLETF + ARB (ARB; 10 mg olmesartan/kg/d × 6 weeks). Following overnight fasting, rats underwent an acute glucose load to better understand the dynamic metabolic responses during hepatic steatosis and early MetS. Tissues were collected at baseline (pre-load; T0) and 1 and 2 h post-glucose load. AT1 blockade increased plasma Ang 1-7 and decreased liver lipids, which was associated with decreased fatty acid transporter 5 (FATP5) and fatty acid synthase (FASN) expression. AT1 blockade decreased liver glucose and increased glucokinase (GCK) expression. These results demonstrate that during MetS, overactivation of AT1 promotes hepatic lipid deposition that is stimulated by an acute glucose load and lipogenesis genes, suggesting that the chronic hyperglycemia associated with MetS contributes to fatty liver pathologies via an AT1-mediated mechanism.

    Topics: Angiotensin I; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animals; Diabetes Mellitus, Type 2; Fatty Liver; Gene Expression; Glucose; Insulin; Lipogenesis; Liver; Metabolic Syndrome; Obesity; Peptide Fragments; Rats; Rats, Inbred OLETF; Receptor, Angiotensin, Type 1

2022
The usefulness of angiotensin-(1-7) and des-Arg
    Hypertension research : official journal of the Japanese Society of Hypertension, 2021, Volume: 44, Issue:8

    Topics: Angiotensin I; Biomarkers; Bradykinin; Humans; Metabolic Syndrome; Peptide Fragments

2021
COVID-19: Underlying Adipokine Storm and Angiotensin 1-7 Umbrella.
    Frontiers in immunology, 2020, Volume: 11

    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third coronavirus leading to a global health outbreak. Despite the high mortality rates from SARS-CoV-1 and Middle-East respiratory syndrome (MERS)-CoV infections, which both sparked the interest of the scientific community, the underlying physiopathology of the SARS-CoV-2 infection, remains partially unclear. SARS-CoV-2 shares similar features with SARS-CoV-1, notably the use of the angiotensin conversion enzyme 2 (ACE2) as a receptor to enter the host cells. However, some features of the SARS-CoV-2 pandemic are unique. In this work, we focus on the association between obesity, metabolic syndrome, and type 2 diabetes on the one hand, and the severity of COVID-19 infection on the other, as it seems greater in these patients. We discuss how adipocyte dysfunction leads to a specific immune environment that predisposes obese patients to respiratory failure during COVID-19. We also hypothesize that an ACE2-cleaved protein, angiotensin 1-7, has a beneficial action on immune deregulation and that its low expression during the SARS-CoV-2 infection could explain the severity of infection. This introduces angiotensin 1-7 as a potential candidate of interest in therapeutic research on CoV infections.

    Topics: Adipokines; Angiotensin I; Angiotensin-Converting Enzyme 2; Betacoronavirus; Coronavirus Infections; COVID-19; Diabetes Mellitus, Type 2; Humans; Metabolic Syndrome; Obesity; Pandemics; Peptide Fragments; Peptidyl-Dipeptidase A; Pneumonia, Viral; SARS-CoV-2; Severe Acute Respiratory Syndrome

2020
Combined maternal and postnatal high-fat diet leads to metabolic syndrome and is effectively reversed by resveratrol: a multiple-organ study.
    Scientific reports, 2018, 04-04, Volume: 8, Issue:1

    This study aimed to study the impact of a combination of maternal and post-weaning high-fat diets and whether resveratrol was beneficial. Sprague-Dawley dams were fed either chow or a high-fat diet, before mating, during pregnancy, and into lactation. At weaning, their offspring were randomly fed chow or a high-fat diet. Four experimental groups were generated: CC (maternal/postnatal chow diet), HC (maternal high-fat/postnatal chow diet), CH (maternal chow/postnatal high-fat diet), and HH (maternal/postnatal high-fat diet). A fifth group consisted of HH plus resveratrol. The 4 month-old offspring of HH group had higher body weight, higher levels of plasma triglycerides, leptin, angiotensin I and angiotensin II and abnormal intraperitoneal glucose tolerance test results, which fulfilled the features of metabolic syndrome. The dysregulation of the renin-angiotensin system was seen in multiple organs. Sirtuin 1 expression/abundance was reduced by a maternal/postnatal high-fat diet, in all the organs examined. Resveratrol ameliorated most of the features of metabolic syndrome and molecular alterations. The administration of a high-fat diet in both periods showed interactive metabolic effects in the plasma and many organs. Our results suggest that a maternal high-fat diet sensitizes offspring to the adverse effects of subsequent high-fat intake on multiple organs.

    Topics: Adipose Tissue; Angiotensin I; Angiotensin II; Animals; Blood Pressure; Body Weight; Diet, High-Fat; Female; Glucose Tolerance Test; Male; Maternal Nutritional Physiological Phenomena; Metabolic Syndrome; Obesity; Pregnancy; Rats; Rats, Sprague-Dawley; Renin-Angiotensin System; Resveratrol; Sirtuin 1; Triglycerides

2018
[Effect of Astragali Radix in improving early renal damage in metabolic syndrome rats through ACE2/Mas pathway].
    Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica, 2015, Volume: 40, Issue:21

    To study the expression of angiotensin converting enzyme 2 (ACE2) and angiotensin (Ang) 1-7 specific receptor Mas protain in renal blood vessels of metabolic syndrome ( MS) rats and its anti-oxidative effect. A total of 80 male SD rats were divided into four groups: the normal control group (NC, the same volume of normal saline), the MS group (high fat diet), the MS + Astragali Radix group (MS + HQ, 6 g x kg(-1) x d(-1) in gavage) and the MS + Valsartan group (MS + XST, 30 mg x kg(-1) x d(-1) in gavage). After four weeks of intervention, their general indexes, biochemical indexes and blood pressure were measured; plasma and renal tissue Ang II, malondialdehyde (MDA) and superoxide demutase (SOD) levels were measured with radioimmunoassay. The protein expressions of Mas receptor, AT1R, ACE and ACE2 were detected by western blot analysis. According to the result, compared with the NC group, the MS group and the MS + HQ group showed significant increases in systolic and diastolic pressures, body weight, fasting glucose, fasting insulin, triglycerides, free fatty acid and Ang II level of MS rats (P < 0.05). The MS + XST group showed notable decreases in systolic and diastolic pressures than that of the MS group. The MS group showed significant increases in the SOD activity and NO level and decrease in the MDA level after being intervened with Astragali Radix. ACE and AT1R protein expressions in renal tissues of the MS group were higher than that in the NC group, but with lower ACE2 and -Mas receptor expressions (all P < 0.05). Compared with the MS group, the MS + HQ group showed significant increase in Mas receptor expression in renal tissues, whereas the MS + XST group showed notable decrease in AT1R (all P < 0.05). In conclusion, Astragali Radix can increase the Mas receptor expressions in renal tissues, decrease ACE expression and change local Ang II, MDA, NO and SOD in kidneys, so as to protect early damages in renal tissues.

    Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Astragalus Plant; Blood Glucose; Blood Pressure; Drugs, Chinese Herbal; Humans; Kidney; Male; Malondialdehyde; Metabolic Syndrome; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Signal Transduction

2015
Increasing angiotensin-(1-7) levels in the brain attenuates metabolic syndrome-related risks in fructose-fed rats.
    Hypertension (Dallas, Tex. : 1979), 2014, Volume: 63, Issue:5

    We evaluated effects of chronic intracerebroventricular infusion of angiotensin (Ang)-(1-7) on cardiovascular and metabolic parameters in fructose-fed (FF) rats. After 6 weeks of fructose intake (10% in drinking water), Sprague-Dawley rats were subjected to intracerebroventricular infusion of Ang-(1-7) (200 ng/h; FF+A7 group) or 0.9% sterile saline (FF group) for 4 weeks with continued access to fructose. Compared with control rats, FF rats had increased mean arterial pressure and cardiac sympathetic tone with impaired baroreflex sensitivity. FF rats also presented increased circulating triglycerides, leptin, insulin, and glucose with impaired glucose tolerance. Furthermore, relative weights of liver and retroperitoneal adipose tissue were increased in FF rats. Glycogen content was reduced in liver, but increased in muscle. In contrast, fructose-fed rats subjected to chronic intracerebroventricular infusion of Ang-(1-7) presented reduced cardiac sympathetic tone with normalized mean arterial pressure, baroreflex sensitivity, glucose and insulin levels, and improved glucose tolerance. Relative weight of liver, and hepatic and muscle glycogen contents were also normalized in FF+A7 rats. In addition, FF+A7 rats had reduced mRNA expression for neuronal nitric oxide synthase and NR1 subunit of N-methyl-d-aspartate receptor in hypothalamus and dorsomedial medulla. Ang-(1-7) infusion did not alter fructose-induced hyperleptinemia and increased relative weight of retroperitoneal adipose tissue. There were no differences in body weights, neither in liver mRNA expression of phosphoenolpyruvate carboxykinase or glucose-6-phosphatase among the groups. These data indicate that chronic increase in Ang-(1-7) levels in the brain may have a beneficial role in fructose-fed rats by ameliorating cardiovascular and metabolic disorders.

    Topics: Angiotensin I; Animals; Baroreflex; Blood Glucose; Blood Pressure; Body Weight; Brain; Dietary Carbohydrates; Disease Models, Animal; Fructose; Glycogen; Infusions, Intraventricular; Insulin; Metabolic Syndrome; Peptide Fragments; Rats; Rats, Sprague-Dawley; Risk Factors

2014
Angiotensin II and 1-7 during aging in Metabolic Syndrome rats. Expression of AT1, AT2 and Mas receptors in abdominal white adipose tissue.
    Peptides, 2014, Volume: 57

    Renin-Angiotensin System (RAS) plays an important role in the development of Metabolic Syndrome (MS) and in aging. Angiotensin 1-7 (Ang 1-7) has opposite effects to Ang II. All of the components of RAS are expressed locally in adipose tissue and there is over-activation of adipose RAS in obesity and hypertension. We determined serum and abdominal adipose tissue Ang II and Ang 1-7 in control and MS rats during aging and the expression of AT1, AT2 and Mas in white adipose tissue. MS was induced by sucrose ingestion during 6, 12 and 18 months. During aging, an increase in body weight, abdominal fat and dyslipidemia were found but increases in aging MS rats were higher. Control and MS concentrations of serum Ang II from 6-month old rats were similar. Aging did not modify Ang II seric concentration in control rats but decreased it in MS rats. Ang II levels increased in WAT from both groups of rats. Serum and adipose tissue Ang 1-7 increased during aging in MS rats. Western blot analysis revealed that AT1 expression increased in the control group during aging while AT2 and Mas remained unchanged. In MS rats, AT1 and AT2 expression decreased significantly in aged rats. The high concentration of Ang 1-7 and adiponectin in old MS rats might be associated to an increased expression of PPAR-γ. PPAR-γ was increased in adipose tissue from MS rats. It decreased with aging in control rats and showed no changes during aging in MS rats. Ang 1-7/Mas axis was the predominant pathway in WAT from old MS animals and could represent a potential target for therapeutical strategies in the treatment of MS during aging.

    Topics: Adipose Tissue, White; Aging; Angiotensin I; Angiotensin II; Animals; Gene Expression Regulation; Humans; Hypertension; Metabolic Syndrome; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Receptor, Angiotensin, Type 2; Receptors, Angiotensin; Receptors, G-Protein-Coupled; Renin-Angiotensin System

2014
Angiotensin 1-7 as means to prevent the metabolic syndrome: lessons from the fructose-fed rat model.
    Diabetes, 2013, Volume: 62, Issue:4

    We studied the effects of chronic angiotensin 1-7 (Ang 1-7) treatment in an experimental model of the metabolic syndrome, i.e., rats given high-fructose/low-magnesium diet (HFrD). Rats were fed on HFrD for 24 weeks with and without Ang 1-7 (576 µg/kg/day, s.c., Alzet pumps). After 6 months, Ang 1-7-treated animals had lower body weight (-9.5%), total fat mass (detected by magnetic resonance imaging), and serum triglycerides (-51%), improved glucose tolerance, and better insulin sensitivity. Similar metabolic effects were also evident, albeit in the absence of weight loss, in rats first exposed to HFrD for 5 months and then subjected to short-term (4 weeks) treatment with Ang 1-7. Six months of Ang 1-7 treatment were associated with lower plasma renin activity (-40%) and serum aldosterone (-48%), less hepatosteatatitis, and a reduction in epididymal adipocyte volume. The marked attenuation of macrophage infiltration in white adipose tissue (WAT) was associated with reduced levels of the pP65 protein in the epididymal fat tissue, suggesting less activation of the nuclear factor-κB (NFκB) pathway in Ang 1-7-treated rats. WAT from Ang 1-7-treated rats showed reduced NADPH-stimulated superoxide production. In single muscle fibers (myofibers) harvested and grown ex vivo for 10 days, myofibers from HFrD rats gave rise to 20% less myogenic cells than the Ang 1-7-treated rats. Fully developed adipocytes were present in most HFrD myofiber cultures but entirely absent in cultures from Ang 1-7-treated rats. In summary, Ang 1-7 had an ameliorating effect on insulin resistance, hypertriglyceridemia, fatty liver, obesity, adipositis, and myogenic and adipogenic differentiation in muscle tissue in the HFrD rats.

    Topics: Adipose Tissue; Angiotensin I; Animals; Cardiovascular Agents; Dietary Carbohydrates; Disease Models, Animal; Drug Administration Schedule; Epididymis; Extracellular Signal-Regulated MAP Kinases; Fructose; Gene Expression Regulation; Male; Metabolic Syndrome; Muscle, Skeletal; Oxidative Stress; Peptide Fragments; Phosphorylation; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Wistar; Reactive Oxygen Species; Receptors, G-Protein-Coupled; Transcription Factor RelA

2013
Long-term AT1 receptor blockade improves metabolic function and provides renoprotection in Fischer-344 rats.
    American journal of physiology. Heart and circulatory physiology, 2007, Volume: 293, Issue:3

    Fischer-344 (F344) rats exhibit proteinuria and insulin resistance in the absence of hypertension as they age. We determined the effects of long-term (1 yr) treatment with the angiotensin (ANG) II type 1 (AT(1)) receptor blocker L-158,809 on plasma and urinary ANG peptide levels, systolic blood pressure (SBP), and indexes of glucose metabolism in 15-mo-old male F344 rats. Young rats at 3 mo of age (n = 8) were compared with two separate groups of older rats: one control group (n = 7) and one group treated with L-158,809 (n = 6) orally (20 mg/l) for 1 yr. SBP was not different between control and treated rats but was higher in young rats. Serum leptin, insulin, and glucose levels were comparable between treated and young rats, whereas controls had higher glucose and leptin with a similar trend for insulin. Plasma ANG I and ANG II were higher in treated than untreated young or older rats, as evidence of effective AT(1) receptor blockade. Urinary ANG II and ANG-(1-7) were higher in controls compared with young animals, and treated rats failed to show age-related increases. Protein excretion was markedly lower in treated and young rats compared with control rats (young: 8 +/- 2 mg/day vs. control: 129 +/- 51 mg/day vs. treated: 9 +/- 3 mg/day, P < 0.05). Long-term AT(1) receptor blockade improves metabolic parameters and provides renoprotection. Differential regulation of systemic and intrarenal (urinary) ANG systems occurs during blockade, and suppression of the intrarenal system may contribute to reduced proteinuria. Thus, insulin resistance, renal injury, and activation of the intrarenal ANG system during early aging in normotensive animals can be averted by renin-ANG system blockade.

    Topics: Aging; Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Blood Glucose; Blood Pressure; Imidazoles; Insulin; Kidney; Leptin; Male; Metabolic Syndrome; Metabolism; Rats; Rats, Inbred F344; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Tetrazoles

2007
The association between angiotensin II-induced free radical generation and membrane fluidity in neutrophils of patients with metabolic syndrome.
    The Journal of membrane biology, 2006, Volume: 214, Issue:2

    Angiotensin II (Ang II) is able to induce free radical generation in neutrophils, which is more elevated in neutrophils of patients with hypercholesterolemia (HC). In addition, the signal processing through angiotensin I (Ang I) receptors is altered. In present study, we compared the Ang II-triggered free radical generation of neutrophils obtained from patients with relatively isolated forms of metabolic syndrome (MS) with membrane-bound cholesterol content and membrane fluidity. We determined the enhancement of Ang II-induced superoxide anion and leukotriene C(4) (LTC(4)) generation, membrane fluidity and cell-bound cholesterol content of neutrophils obtained from 12 control subjects, 11 patients with obesity (Ob), 10 patients with type 2 diabetes mellitus (t2-DM) and 12 patients with HC. The alteration of signal processing was studied after preincubation with different inhibiting drugs. Superoxide anion, LTC(4) production and membrane rigidity were increased in the following order: control < Ob < t2-DM < HC. Both Ang II-induced superoxide anion and LTC(4) generation were decreased in control cells by pertussis toxin and fluvastatin (Flu), whereas in each patient group, mepacrin, verapamil and Flu were effective, suggesting alterations in signal pathways, which may be attributed to isoprenylation. The enhancement of superoxide anion and LTC(4) generation correlated significantly with membrane rigidity, independently from the experimental groups and membrane-bound cholesterol content. Membrane rigidity of neutrophils, obtained from patients with MS, plays a role in Ang II-induced free radical generation independent of intracellular cholesterol homeostasis.

    Topics: Adult; Angiotensin I; Angiotensin II; Anticholesteremic Agents; Cholesterol; Diabetes Mellitus, Type 2; Enzyme Inhibitors; Fatty Acids, Monounsaturated; Female; Fluvastatin; Homeostasis; Humans; Hypercholesterolemia; Indoles; Leukotriene C4; Male; Membrane Fluidity; Metabolic Syndrome; Middle Aged; Neutrophils; Pertussis Toxin; Protein Prenylation; Quinacrine; Signal Transduction; Superoxides; Vasoconstrictor Agents; Vasodilator Agents; Verapamil

2006