angiotensin-i has been researched along with Hyperinsulinism* in 2 studies
2 other study(ies) available for angiotensin-i and Hyperinsulinism
Article | Year |
---|---|
Does exercise increase insulin sensitivity through angiotensin 1-7?
Topics: Angiotensin I; Exercise; Humans; Hyperinsulinism; Insulin Resistance; Peptide Fragments | 2016 |
Cross talk between angiotensin-(1-7)/Mas axis and sirtuins in adipose tissue and metabolism of high-fat feed mice.
Angiotensin-(1-7) and resveratrol have been described as new potential therapeutic tools on treating and preventing metabolic disorders. In the present study we aimed to evaluate the effect of an oral formulation of angiotensin-(1-7) [Ang-(1-7)] included in HPB-cyclodextrin and resveratrol (RSV), in modulation of sirtuin and renin-angiotensin system (RAS) in adipose tissue of mice treated with a high-fat diet (HFD). We observed that HFD+Ang-(1-7) and HFD+RSV groups presented marked decrease in the adipose tissue mass. Furthermore, these animals showed improved insulin-sensitivity and glucose tolerance as well as lower plasma levels of fasting glucose and lipids. The RT-PCR analysis revealed decreased expression of ACE and an increase of ACE2 [Ang-(1-7) marker] in group treated with resveratrol and also an increased expression of SIRT1 in groups that received Ang-(1-7). We showed for the first time that improved metabolic profile is associated with increased expression of GLUT4 and high expression of AMPK/FOXO1/PPAR-γ pathway in adipose-tissue. Finally, adipocyte primary cell-culture incubated with and without sirtuin and Ang-(1-7)/Mas antagonists pointed out for a cross-talking between RAS and sirtuins. We conclude that oral administration of Ang-(1-7) and RSV improved metabolic profile through a cross-modulation between RAS and Sirtuins. Topics: Administration, Oral; Angiotensin I; Animals; Antimetabolites; Cells, Cultured; Diet, High-Fat; Drug Evaluation, Preclinical; Gene Expression; Glucose Intolerance; Hyperinsulinism; Insulin Resistance; Intra-Abdominal Fat; Lipolysis; Male; Mice; Obesity; Peptide Fragments; Primary Cell Culture; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Resistin; Resveratrol; Sirtuins; Stilbenes | 2014 |