angiotensin-i and Hepatitis-C--Chronic

angiotensin-i has been researched along with Hepatitis-C--Chronic* in 2 studies

Other Studies

2 other study(ies) available for angiotensin-i and Hepatitis-C--Chronic

ArticleYear
Angiotensin-(1-7), an alternative metabolite of the renin-angiotensin system, is up-regulated in human liver disease and has antifibrotic activity in the bile-duct-ligated rat.
    Clinical science (London, England : 1979), 2009, Sep-14, Volume: 117, Issue:11

    Ang-(1-7) (angiotensin-1-7), a peptide product of the recently described ACE (angiotensin-converting enzyme) homologue ACE2, opposes the harmful actions of AngII (angiotensin II) in cardiovascular tissues, but its role in liver disease is unknown. The aim of the present study was to assess plasma levels of Ang-(1-7) in human liver disease and determine its effects in experimental liver fibrosis. Angiotensin peptide levels were measured in cirrhotic and non-cirrhotic patients with hepatitis C. The effects of Ang-(1-7) on experimental fibrosis were determined using the rat BDL (bile-duct ligation) model. Liver histology, hydroxyproline quantification and expression of fibrosis-related genes were assessed. Expression of RAS (renin-angiotensin system) components and the effects of Ang-(1-7) were examined in rat HSCs (hepatic stellate cells). In human patients with cirrhosis, both plasma Ang-(1-7) and AngII concentrations were markedly elevated (P<0.001). Non-cirrhotic patients with hepatitis C had elevated Ang-(1-7) levels compared with controls (P<0.05), but AngII concentrations were not increased. In BDL rats, Ang-(1-7) improved fibrosis stage and collagen Picrosirius Red staining, and reduced hydroxyproline content, together with decreased gene expression of collagen 1A1, alpha-SMA (smooth muscle actin), VEGF (vascular endothelial growth factor), CTGF (connective tissue growth factor), ACE and mas [the Ang-(1-7) receptor]. Cultured HSCs expressed AT1Rs (AngII type 1 receptors) and mas receptors and, when treated with Ang-(1-7) or the mas receptor agonist AVE 0991, produced less alpha-SMA and hydroxyproline, an effect reversed by the mas receptor antagonist A779. In conclusion, Ang-(1-7) is up-regulated in human liver disease and has antifibrotic actions in a rat model of cirrhosis. The ACE2/Ang-(1-7)/mas receptor axis represents a potential target for antifibrotic therapy in humans.

    Topics: Actins; Adult; Angiotensin I; Angiotensin II; Animals; Bile Ducts; Cells, Cultured; Drug Evaluation, Preclinical; Female; Hepatitis C, Chronic; Humans; Hydroxyproline; Liver; Liver Cirrhosis; Liver Cirrhosis, Experimental; Male; Middle Aged; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Renin; Renin-Angiotensin System; RNA, Messenger; Up-Regulation

2009
Chronic liver injury in rats and humans upregulates the novel enzyme angiotensin converting enzyme 2.
    Gut, 2005, Volume: 54, Issue:12

    Angiotensin converting enzyme (ACE) 2 is a recently identified homologue of ACE that may counterregulate the actions of angiotensin (Ang) II by facilitating its breakdown to Ang 1-7. The renin-angiotensin system (RAS) has been implicated in the pathogenesis of cirrhosis but the role of ACE2 in liver disease is not known.. This study examined the effects of liver injury on ACE2 expression and activity in experimental hepatic fibrosis and human cirrhosis, and the effects of Ang 1-7 on vascular tone in cirrhotic rat aorta.. In sham operated and bile duct ligated (BDL) rats, quantitative reverse transcriptase-polymerase chain reaction was used to assess hepatic ACE2 mRNA, and western blotting and immunohistochemistry to quantify and localise ACE2 protein. ACE2 activity was quantified by quenched fluorescent substrate assay. Similar studies were performed in normal human liver and in hepatitis C cirrhosis.. ACE2 mRNA was detectable at low levels in rat liver and increased following BDL (363-fold; p < 0.01). ACE2 protein increased after BDL (23.5-fold; p < 0.05) as did ACE2 activity (fourfold; p < 0.05). In human cirrhotic liver, gene (>30-fold), protein expression (97-fold), and activity of ACE2 (2.4 fold) were increased compared with controls (all p < 0.01). In healthy livers, ACE2 was confined to endothelial cells, occasional bile ducts, and perivenular hepatocytes but in both BDL and human cirrhosis there was widespread parenchymal expression of ACE2 protein. Exposure of cultured human hepatocytes to hypoxia led to increased ACE2 expression. In preconstricted rat aorta, Ang 1-7 alone did not affect vascular tone but it significantly enhanced acetylcholine mediated vasodilatation in cirrhotic vessels.. ACE2 expression is significantly increased in liver injury in both humans and rat, possibly in response to increasing hepatocellular hypoxia, and may modulate RAS activity in cirrhosis.

    Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Aorta, Thoracic; Carboxypeptidases; Cell Hypoxia; Cells, Cultured; Chronic Disease; Disease Models, Animal; Female; Hepatitis C, Chronic; Hepatocytes; Humans; Immunoenzyme Techniques; Liver; Liver Cirrhosis; Male; Nitroimidazoles; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Sprague-Dawley; Reverse Transcriptase Polymerase Chain Reaction; Up-Regulation; Vasodilation

2005