angiotensin-i has been researched along with Erectile-Dysfunction* in 9 studies
2 review(s) available for angiotensin-i and Erectile-Dysfunction
Article | Year |
---|---|
Pathophysiological role of the renin-angiotensin system on erectile dysfunction.
The renin-angiotensin system (RAS) has been shown to play an active role within the erectile tissues. The aim of this narrative review is to summarize the literature addressing the pathophysiological role of RAS on erectile function. Additionally, we update evidence on recent findings on the role of the Ang-(1-7) and Mas receptor on the erectile function and its therapeutic potential for treating erectile dysfunction (ED).. This narrative review is based on the material searched and obtained via MEDLINE and PubMed up to November 2012. The search terms we used are 'angiotensin, erectile dysfunction, renin, Mas receptor' in combination with 'pathophysiology, fibrosis, pathways'.. The levels of angiotensin (Ang) II, the main component of this system, are increased in the corpus cavernosum as compared to those found in the systemic circulation. Moreover, emerging evidence indicates that an increased activity of Ang II via AT1 receptor might contribute to the development of ED, whereas the pharmacological blockage of Ang II/AT1 actions has beneficial effects on the erection. On the other hand, the heptapeptide Ang-(1-7), known as a major endogenous counter-regulator of Ang II actions, favours penile erection via the activation of Mas receptor.. Ang-(1-7) and Mas receptor pathway might be considered as a promising therapeutic target for the treatment of ED. Topics: Angiotensin I; Angiotensin II; Erectile Dysfunction; Humans; Male; Penile Erection; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptor, Angiotensin, Type 1; Receptors, G-Protein-Coupled; Renin-Angiotensin System | 2013 |
Genetic risk factors for erectile dysfunction and genetic determinants of drug response--on the way to improve drug safety?
Association studies give hint for the fact that the risk to develop cardiovascular disorders such as hypertension or coronary heart disease is influenced by the genotype in single nucleotide polymorphisms (SNPs). Considering the close relationship in the pathophysiology of these diseases and erectile dysfunction (ED), the analysis of the association of genotypes in SNPs and ED stands to reason. In an analysis of ED patients and their genotypes in the GNB3 C825T, the ACE I/D and the NOS3 G894T polymorphisms, there was no evidence for influence of the genotypes on the susceptibility to develop ED. At the same time, a significant variation in drug response to sildenafil dependent on the genotypes in the GNB3 C825T and ACE I/D polymorphisms was demonstrated. In the group of GNB3 825C allele carriers, only 50% of patients showed a positive response, while > 90% of the patients genotype TT responded adequately. In parallel, only 50% of ACE D allele carriers showed a positive response to sildenafil in contrast to men genotype II in the ACE I/D polymorphism, who had a response rate of 75%. Considering cardiovascular side effects under sildenafil treatment, it would be interesting to determine if genetic factors have an impact on the side effect profile of this drug. Topics: Angiotensin I; Animals; Erectile Dysfunction; Genotype; Humans; Male; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Phosphodiesterase Inhibitors; Piperazines; Polymorphism, Single Nucleotide; Purines; Sildenafil Citrate; Sulfones; Treatment Outcome; Vasodilator Agents | 2003 |
7 other study(ies) available for angiotensin-i and Erectile-Dysfunction
Article | Year |
---|---|
Angiotensin-(1-7) improves diabetes mellitus-induced erectile dysfunction in rats by regulating nitric oxide synthase levels.
This study explores the role of inducible nitric oxide synthase (iNOS) in the pathogenesis of diabetes mellitus-induced erectile dysfunction (DMED) and the effect of angiotensin 1-7 (Ang- [1-7]) on NOS levels. A type 2 diabetes mellitus (DM) rat model was established. Erectile function was assessed by measuring intracavernous pressure and mean arterial pressure after electrical stimulation. The expression of iNOS, endothelial NOS (eNOS), eNOS phosphorylated at Ser 1177 (p-eNOS [Ser 1177]), and AKT/p-AKT in corpus cavernosum smooth muscle cells (CCSMCs) was measured by Western blotting and immunofluorescence. The plasma levels of NO, SOD, malondialdehyde, and peroxynitrite were calculated. Intracellular calcium content was determined by flow cytometry. DMED rats exhibited decreased erectile function and severe oxidative stress. Ang-(1-7) treatment improved erectile response and suppressed oxidative stress by upregulating p-eNOS/eNOS and downregulating iNOS levels. Silencing iNOS in CCSMCs decreased oxidative stress and intracellular calcium levels induced by high glucose. In turn, iNOS overexpression increased oxidative stress and intracellular calcium level. Treatment with the MAS receptor antagonist A779 and the Akt antagonist LY294002 reversed the effects of Ang-(1-7) on iNOS. Ang-(1-7) improved DMED through the MAS/AKT signaling pathway. Topics: Angiotensin I; Animals; Calcium; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Erectile Dysfunction; Humans; Male; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Peptide Fragments; Proto-Oncogene Proteins c-akt; Rats | 2022 |
Upregulation of the angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas receptor axis by a combination of Yinyanghuo (Herba Epimedii Brevicornus) and Cheqianzi (Semen Plantaginis) improves erectile function in spontaneously hypertensive rats.
To evaluate the effects of a combination of Yinyanghuo (Herba Epimedii Brevicornus) (HEB) and Cheqianzi (Semen Plantaginis) (SP) on erectile dysfunction caused by essential hypertension in spontaneously hypertensive rats (SHRs), and to elucidate the role of the angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas receptor (ACE2/Ang [1-7]/Mas receptor) axis in this process.. A total of 24 SHRs were randomly assigned to three groups: SHR-control, low-dose (12.5 g/kg) and high-dose (25 g/kg) HEB+SP (HEBSP). Eight Wistar-Kyoto rats were used as normal controls. HEBSP was administered by oral gavage for 28 d. Erectile function was measured once a week using the Heaton test. After 4 weeks of treatment, the corpus cavernosum was harvested from each rat to measure nitric oxide (NO), nitric oxide synthase (eNOS) and Ang (1-7) levels, as well as ACE2, Mas receptor and neuronal nitric oxide synthase (nNOS) protein expression.. After 4 weeks of treatment, HEBSP significantly increased erectile function in the treated group compared with SHR-control group (P < 0.01). Additionally, HEBSP treatment significantly increased cavernosal levels of Ang (1-7), eNOS and NO. Moreover, HEBSP significantly elevated the expression levels of ACE2, Mas receptor and nNOS. These beneficial effects were elevated in the high-dose HEBSP group.. HEBSP improved erectile function in SHRs by upregulating the ACE2/Ang (1-7)/Mas receptor axis, eNOS and nNOS pathways. Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Drug Therapy, Combination; Drugs, Chinese Herbal; Erectile Dysfunction; Humans; Male; Nitric Oxide Synthase Type I; Penile Erection; Peptide Fragments; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Up-Regulation | 2020 |
Angiotensin-(1-7) Downregulates Diabetes-Induced cGMP Phosphodiesterase Activation in Rat Corpus Cavernosum.
Molecular mechanisms of the beneficial effects of angiotensin-(1-7), Ang-(1-7), in diabetes-related complications, including erectile dysfunction, remain unclear. We examined the effect of diabetes and/or Ang-(1-7) treatment on vascular reactivity and cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE) in corpus cavernosum. Male Wistar rats were grouped as (1) control, (2) diabetic (streptozotocin, STZ, treated), (3) control + Ang-(1-7), and (4) diabetic + Ang-(1-7). Following 3 weeks of Ang-(1-7) treatment subsequent to induction of diabetes, rats were sacrificed. Penile cavernosal tissue was isolated to measure vascular reactivity, PDE gene expression and activity, and levels of p38MAP kinase, nitrites, and cGMP. Carbachol-induced vasorelaxant response after preincubation of corpus cavernosum with PE was significantly attenuated in diabetic rats, and Ang-(1-7) markedly corrected the diabetes-induced impairment. Gene expression and activity of PDE and p38MAP kinase were significantly increased in cavernosal tissue of diabetic rats, and Ang-(1-7) markedly attenuated STZ-induced effects. Ang-(1-7) significantly increased the levels of nitrite and cGMP in cavernosal tissue of control and diabetic rats. Cavernosal tissue of diabetic rats had significantly reduced cGMP levels and Ang-(1-7) markedly prevented the STZ-induced cGMP depletion. This study demonstrates that attenuation of diabetes-induced PDE activity might be one of the key mechanisms in the beneficial effects of Ang-(1-7). Topics: 3',5'-Cyclic-GMP Phosphodiesterases; Angiotensin I; Animals; Cyclic GMP; Diabetes Mellitus, Experimental; Down-Regulation; Erectile Dysfunction; Gene Expression Regulation, Enzymologic; Male; Nitrites; p38 Mitogen-Activated Protein Kinases; Penis; Peptide Fragments; Rats; Rats, Wistar; Risk Factors | 2017 |
Diminazene protects corpus cavernosum against hypercholesterolemia-induced injury.
Angiotensin-converting enzyme 2 (ACE2) is a key enzyme of the renin angiotensin system, which breaks down angiotensin II and forms angiotensin-(1-7). In erectile tissues, it has been documented that angiotensin II contributes to the development of erectile dysfunction (ED), while treatment with angiotensin-(1-7) improves penile erection. However, the expression and function of ACE2 in erectile tissues have never been investigated.. Here, we examined the expression of ACE2 in erectile tissues and its actions against hypercholesterolemia-induced corpus cavernosum (CC) injury.. Hypercholesterolemic apolipoprotein E knockout (ApoE(-/-) ) mice, a well-known model of ED, were treated with diminazene aceturate (DIZE), an ACE2 activator compound, or vehicle for 3 weeks. Reactive oxygen species (ROS), collagen content, and protein expression of ACE2, neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) subunits were evaluated in the penis of DIZE-treated and untreated ApoE(-/-) mice. Functional studies were performed in CC strips.. ACE2 expression and its role in modulating nitric oxide (NO)/ROS production and fibrosis within the CC of hypercholesterolemic mice were the main outcome measures.. ACE2 was expressed in smooth muscle and endothelial cells of mouse CC. Interestingly, ACE2 was downregulated in penis of hypercholesterolemic mice with ED, suggesting a protective role of ACE2 on the CC homeostasis. In accordance with that, pharmacological ACE2 activation by DIZE treatment reduced ROS production and NADPH oxidase expression, and elevated nNOS and eNOS expression and NO bioavailability in the penis of ApoE(-/-) mice. Additionally, DIZE decreased collagen content within the CC. These beneficial actions of DIZE on the CC were not accompanied by improvements in atherosclerotic plaque size or serum lipid profile.. ACE2 is expressed in erectile tissue and its reduction is associated with hypercholesterolemia-induced ED. Additionally, treatment with DIZE improved hypercholesterolemia-induced CC injury, suggesting ACE2 as a potential target for treating ED. . Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Apolipoproteins E; Diminazene; Down-Regulation; Erectile Dysfunction; Hypercholesterolemia; Male; Mice; Mice, Knockout; NADPH Oxidases; Nitric Oxide; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type III; Penile Erection; Penis; Peptide Fragments; Peptidyl-Dipeptidase A; Reactive Oxygen Species | 2015 |
Chronic treatment with Ang-(1-7) reverses abnormal reactivity in the corpus cavernosum and normalizes diabetes-induced changes in the protein levels of ACE, ACE2, ROCK1, ROCK2 and omega-hydroxylase in a rat model of type 1 diabetes.
Angiotensin-(1-7) [Ang-(1-7)] may have beneficial effects in diabetes mellitus-induced erectile dysfunction (DMIED) but its molecular actions in the diabetic corpus cavernosum (CC) are not known. We characterized the effects of diabetes and/or chronic in vivo administration of Ang-(1-7) on vascular reactivity in the rat corpus cavernosum (CC) and on protein expression levels of potential downstream effectors of the renin-angiotensin-aldosterone system (RAAS) such as angiotensin-converting enzyme (ACE), ACE2, Rho kinases 1 and 2 (ROCK1 and ROCK2), and omega-hydroxylase, the cytochrome-P450 enzyme that metabolizes arachidonic acid to form the vasoconstrictor, 20-hydroxyeicosatetraenoic acid. Streptozotocin-treated rats were chronicically administered Ang-(1-7) with or without A779, a Mas receptor antagonist, during weeks 4 to 6 of diabetes. Ang-(1-7) reversed diabetes-induced abnormal reactivity to vasoactive agents (endothelin-1, phenylepherine, and carbachol) in the CC without correcting hyperglycemia. Six weeks of diabetes led to elevated ACE, ROCK1, ROCK 2, and omega-hydroxylase and a concomitant decrease in ACE2 protein expression levels that were normalized by Ang-(1-7) treatment but not upon coadministration of A779. These data are supportive of the notion that the beneficial effects of Ang-(1-7) in DMIED involve counterregulation of diabetes-induced changes in ACE, ACE2, Rho kinases, and omega-hydroxylase proteins in the diabetic CC via a Mas receptor-dependent mechanism. Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Blood Glucose; Body Weight; Cytochrome P-450 CYP4A; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Disease Models, Animal; Erectile Dysfunction; Male; Penis; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; rho-Associated Kinases; Streptozocin | 2014 |
Evidence that the vasodilator angiotensin-(1-7)-Mas axis plays an important role in erectile function.
The vasodilator/antiproliferative peptide angiotensin-(1-7) [ANG-(1-7)] is released into the corpus cavernosum sinuses, but its role in erectile function has yet to be defined. In this study, we sought to determine whether ANG-(1-7) and its receptor Mas play a role in erectile function. The ANG-(1-7) receptor Mas was immunolocalized in rat corpus cavernosum by confocal microscopy. Infusion of ANG-(1-7) into corpus cavernosum at a rate of 15.5 pmol x kg(-1) x min(-1) potentiated the elevation of the corpus cavernosum pressure induced by electrical stimulation of the major pelvic ganglion (MPG) in rats. The facilitatory effect of ANG-(1-7) was completely blunted by the specific ANG-(1-7) receptor blocker A-779 and N(omega)-nitro-L-arginine methyl ester. Nitric oxide (NO) release in the corpus cavernosum was evaluated with the fluorescent dye 4-amino-5 methylamino-2',7'-difluorofluorescein diacetate. Electrical stimulated-release of NO in rat corpus cavernosum was potentiated by ANG-(1-7). Furthermore, incubation of rat and mouse corpus cavernosum strips with ANG-(1-7) at 10 nmol/l resulted in an increase of NO release. This effect was completely abolished in mas-deficient mice. More importantly, genetic deletion of Mas resulted in compromised erectile function as demonstrated by penile fibrosis and severely depressed response to electrical stimulation of the MPG. Furthermore, the attenuated erectile function of DOCA-salt hypertensive rats was fully restored by ANG-(1-7) administration. Together these data provide strong evidence for a key role of the ANG-(1-7)-Mas axis in erectile function. Topics: Angiotensin I; Angiotensin II; Animals; Desoxycorticosterone; Disease Models, Animal; Electric Stimulation; Enzyme Inhibitors; Erectile Dysfunction; Hypertension; Immunohistochemistry; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Penile Erection; Penis; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; Sodium Chloride, Dietary; Vasodilator Agents | 2007 |
Different responses to angiotensin-(1-7) in young, aged and diabetic rabbit corpus cavernosum.
We evaluated the ability of angiotensin-(1-7) [Ang-(1-7)] to produce relaxation of the corpus cavernosum of New Zealand White rabbits. The reactivity of corpus cavernosal strips isolated from young rabbits (8-10 months old) was assessed in organ-bath chambers. Cumulative concentration response curves for Ang-(1-7), angiotensin II (Ang II), carbachol and sodium nitroprusside (SNP) were established. Ang-(1-7) (10(-12) to 10(-5)M) produced a concentration-dependent relaxation of the corpus cavernosal strips with a pD(2) value of 9.8+/-0.3. Ang-(1-7)-induced maximal relaxant response was reduced by 48+/-2%, 57+/-3% and 76+/-2% in the presence of A-779 (10(-6)M), a selective Ang-(1-7) receptor (AT(1-7)) antagonist, nitro-l-arginine methyl ester (l-NAME) (10(-4)M), an inhibitor of nitric oxide (NO) synthase, or iberiotoxin (5 x 10(-8)M), an inhibitor of calcium-activated potassium (BK) channels, respectively. In contrast, Ang II-induced contraction was increased in the presence of A-779. Carbachol-, SNP- and Ang-(1-7)-induced relaxations were significantly reduced whereas Ang-II induced contraction was significantly increased in the cavernosum strips from older (18-24 months old) and diabetic rabbits compared to the young. Pre-incubation of the cavernosum strips obtained from young, older or diabetic rabbits with Ang-(1-7) resulted in a significant attenuation of Ang II-induced contraction. In conclusion, these results demonstrate that Ang-(1-7) can produce nitric oxide-dependent relaxation of the corpus cavernosum through activation of AT(1-7) and BK channels. Older and diabetic animals showed impaired Ang-(1-7)-mediated relaxation suggesting that aging and diabetes related erectile dysfunction (ED) may be partly due to decreased Ang-(1-7)-mediated relaxation of the corpus cavernosum. Acute pre-incubation with Ang-(1-7) was effective in attenuating Ang II-induced contraction of rabbit corpus cavernosum suggesting that the possible role of Ang-(1-7) in treatment of ED should be investigated. Topics: Aging; Angiotensin I; Angiotensin II; Animals; Carbachol; Diabetes Mellitus, Experimental; Dose-Response Relationship, Drug; Enzyme Inhibitors; Erectile Dysfunction; Large-Conductance Calcium-Activated Potassium Channels; Male; Muscle Relaxation; Muscle, Smooth; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Nitroprusside; Penis; Peptide Fragments; Peptides; Potassium Channel Blockers; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rabbits; Receptors, G-Protein-Coupled; Vasoconstrictor Agents; Vasodilator Agents | 2007 |