angiotensin-i and Dyslipidemias

angiotensin-i has been researched along with Dyslipidemias* in 3 studies

Other Studies

3 other study(ies) available for angiotensin-i and Dyslipidemias

ArticleYear
Anti-Inflammatory Effects of Ang-(1-7) in Ameliorating HFD-Induced Renal Injury through LDLr-SREBP2-SCAP Pathway.
    PloS one, 2015, Volume: 10, Issue:8

    The angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis (ACE2-Ang-(1-7)-Mas axis) is reported to participate in lipid metabolism in kidney, but its precise effects and underlying mechanisms remain unknown. We hypothesized that Ang-(1-7) reduces lipid accumulation and improves renal injury through the low density lipoprotein receptor-sterol regulatory element binding proteins 2-SREBP cleavage activating protein (LDLr-SREBP2-SCAP) system by suppressing inflammation in high fat diet (HFD)-fed mice. In this study, male C57BL/6 mice were randomized into four groups: STD (standard diet)+saline, HFD+saline, HFD+Ang-(1-7) and STD+Ang-(1-7). After 10 weeks of feeding, mice were administered Ang-(1-7) or saline for two weeks. We found that high inflammation status induced by HFD disrupted the LDLr-SREBP2-SCAP feedback system. Treatment of mice fed a high-fat diet with Ang-(1-7) induced significant improvement in inflammatory status, following the downregulation of LDLr, SREBP2 and SCAP, and then, decreased lipid deposition in kidney and improved renal injury. In conclusion, the anti-inflammatory effect of Ang-(1-7) alleviates renal injury triggered by lipid metabolic disorders through a LDLr- SREBP2-SCAP pathway.

    Topics: Acute Kidney Injury; Angiotensin I; Animals; Anti-Inflammatory Agents; Diet, High-Fat; Dyslipidemias; Inflammation; Kidney; Lipid Metabolism; Male; Mice, Inbred C57BL; Peptide Fragments; Receptors, LDL; Signal Transduction; Sterol Regulatory Element Binding Protein 2

2015
The Mas receptor mediates modulation of insulin signaling by angiotensin-(1-7).
    Regulatory peptides, 2012, Aug-20, Volume: 177, Issue:1-3

    Angiotensin (Ang)-(1-7) stimulates proteins belonging to the insulin signaling pathway and ameliorates the Ang II negative effects at this level. However, up to date, receptors involved and mechanisms behind these observations remain unknown. Accordingly, in the present study, we explored the in vivo effects of antagonism of the Ang-(1-7) specific Mas receptor on insulin signal transduction in rat insulin-target tissues. We evaluated the acute modulation of insulin-stimulated phosphorylation of Akt, GSK-3β (Glycogen synthase kinase-3β) and AS160 (Akt substrate of 160kDa) by Ang-(1-7) and/or Ang II in the presence and absence of the selective Mas receptor antagonist A-779 in insulin-target tissues of normal rats. Also using A-779, we determined whether the Mas receptor mediates the improvement of insulin sensitivity exerted by chronic Ang-(1-7) treatment in fructose-fed rats (FFR), a model of insulin resistance, dyslipidemia and mild hypertension. The two major findings of the present work are as follows; 1) Ang-(1-7) attenuates acute Ang II-mediated inhibition of insulin signaling components in normal rats via a Mas receptor-dependent mechanism; and 2). The Mas receptor appears to be involved in beneficial effects of Ang-(1-7) on the phosphorylation of crucial insulin signaling mediators (Akt, GSK-3β and AS160), in liver, skeletal muscle and adipose tissue of FFR. These results shed light into the mechanism by which Ang-(1-7) exerts its positive physiological modulation of insulin actions in classical metabolic tissues and reinforces the central role of Akt in these effects.

    Topics: Adipose Tissue; Angiotensin I; Angiotensin II; Animals; Blood Pressure; Dyslipidemias; Fructose; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; GTPase-Activating Proteins; Hypertension; Insulin; Insulin Resistance; Liver; Male; Muscle, Skeletal; Peptide Fragments; Phosphorylation; Proto-Oncogene Mas; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Signal Transduction

2012
Beneficial effects of angiotensin (1-7) in diabetic rats with cardiomyopathy.
    Therapeutic advances in cardiovascular disease, 2011, Volume: 5, Issue:3

    This study was designed to investigate the effect of angiotensin (1-7), a Mas receptor agonist, and A-779, a Mas receptor antagonist, in rats with diabetic cardiomyopathy (DC).. Rats treated with a single injection of streptozotocin (50 mg/kg, intraperitoneal), developed DC after 8 weeks. The extent of DC was assessed by measuring the left ventricular weight/body weight (LVW/BW) ratio, absolute LVW, left ventricular developed pressure (LVDP), maximum change in left ventricular pressure over time (dp/dtmax), minimum change in left ventricular pressure over time (dp/dtmin), left ventricular (LV) protein content, LV collagen content, lipid profile, and serum nitrite/nitrate concentration. Test drug treatment was given from week 4 to week 8.. Angiotensin (1-7) treatment attenuated DC by significantly increasing LVDP, dp/dtmax, dp/dtmin, serum nitrite/nitrate concentration and significantly decreasing the LVW/BW ratio and LV collagen content. For the first time, this study has documented that endogenous angiotensin (1-7) regulates lipid profile in rats, and that treatment with angiotensin (1-7) significantly attenuates diabetes-induced changes in lipid profile. However, LV protein content and absolute LVW remain unaffected after treatment.. Angiotensin (1-7) significantly attenuates DC in rats because of vasodilatory, antiproliferative and anifibrotic properties but also because of a significant decrease in dyslipidemia, the major culprit for cardiac dysfunctions in diabetes.

    Topics: Angiotensin I; Angiotensin II; Animals; Blood Glucose; Collagen; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Dyslipidemias; Fibrosis; Heart Ventricles; Hypertrophy, Left Ventricular; Lipids; Nitrates; Nitrites; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; Time Factors; Ventricular Function, Left; Ventricular Pressure

2011