angiotensin-i and Chemical-and-Drug-Induced-Liver-Injury

angiotensin-i has been researched along with Chemical-and-Drug-Induced-Liver-Injury* in 2 studies

Other Studies

2 other study(ies) available for angiotensin-i and Chemical-and-Drug-Induced-Liver-Injury

ArticleYear
Longdan Xiegan Tang attenuates liver injury and hepatic insulin resistance by regulating the angiotensin-converting enzyme 2/Ang (1-7)/Mas axis-mediated anti-inflammatory pathway in rats.
    Journal of ethnopharmacology, 2021, Jun-28, Volume: 274

    The ancient Chinese herbal formula Longdan Xiegan Tang (LXT, also called Gentiana Longdancao Decoction to Drain the Liver) treats insulin resistance- and inflammation-associated liver injuries in clinical practice.. To investigate the molecular mechanisms underlying LXT-elicited improvement of the liver injuries.. Male rats were co-treated with olanzapine (5 mg/kg) and LXT extract (50 and 500 mg/kg) for eight weeks. Blood parameters were determined enzymatically or by ELISA. Gene/protein expression was analyzed by Real-Time PCR, Western blot and/or immunohistochemistry.. The present results demonstrate that LXT attenuates liver injury and hepatic insulin resistance by regulating the ACE2/Ang (1-7)/Mas axis-mediated anti-inflammatory pathway in rats. Our findings provide a better understanding of LXT for treatment of insulin resistance- and inflammation-associated liver injuries.

    Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Anti-Inflammatory Agents; Chemical and Drug Induced Liver Injury; Cytokines; Drugs, Chinese Herbal; Fasting; I-kappa B Kinase; Insulin Resistance; Liver; Male; NF-kappa B; Olanzapine; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled

2021
Angiotensin‑(1‑7) prevents lipopolysaccharide‑induced hepatocellular inflammatory response by inhibiting the p38MAPK/AP‑1 signaling pathway.
    Molecular medicine reports, 2018, Volume: 17, Issue:4

    The pathological mechanism of lipopolysaccharide (LPS)‑induced liver injury involves a number of inflammatory mediators and cytokines. Angiotensin (Ang)‑(1‑7), a ligand for the proto‑oncogene Mas (Mas) receptor, antagonizes the actions of Ang II in the renin angiotensin system and exerts an anti‑inflammatory effect on LPS‑induced macrophages. The present study investigated the potential role of Ang‑(1‑7) in the regulation of inflammatory responses in LPS‑induced hepatocytes using the rat liver BRL cell line. The results of the present study demonstrated that the inflammatory mediator, tumor necrosis factor (TNF)‑α, its upstream transcriptional regulatory factor activator protein (AP)‑1 and p38 mitogen activated protein kinase (MAPK) which were detected by reverse transcription‑quantitative polymerase chain reaction and western blotting were upregulated in LPS‑induced hepatic cells in a time‑dependent manner, peaking 12 h following LPS stimulation. By contrast, treatment with Ang‑(1‑7) significantly attenuated the expression of TNF‑α, AP‑1 and p38MAPK in a concentration‑dependent manner. The anti‑inflammatory effect of Ang‑(1‑7) was reversed by the Mas receptor selective antagonist, A779, in BRL cells. Furthermore, the p38MAPK inhibitor, SB 203580, abolished the protective effects of Ang‑(1‑7), suggesting the involvement of the p38MAPK pathway in the anti‑inflammatory activity of Ang‑(1‑7). The results of the present study indicated that Ang‑(1‑7) may serve an anti‑inflammatory role in LPS‑induced hepatocyte injury via the regulation of the p38MAPK/AP‑1 signaling pathway.

    Topics: Angiotensin I; Animals; Chemical and Drug Induced Liver Injury; Dose-Response Relationship, Drug; Gene Expression Regulation; Hepatocytes; Lipopolysaccharides; p38 Mitogen-Activated Protein Kinases; Peptide Fragments; Protective Agents; Rats; Signal Transduction; Transcription Factor AP-1

2018