angiotensin-i has been researched along with Breast-Neoplasms* in 6 studies
1 review(s) available for angiotensin-i and Breast-Neoplasms
Article | Year |
---|---|
The Network of Angiotensin Receptors in Breast Cancer.
The renin-angiotensin system (RAS) is a network of proteins regulating many aspects of human physiology, including cardiovascular, pulmonary, and immune system physiology. The RAS is a complicated network of G-protein coupled receptors (GPCRs) (i.e., AT1R, AT2R, MASR, and MRGD) orchestrating the effects of several hormones (i.e., angiotensin II, angiotensin (1-7), and alamandine) produced by protease-based transmembrane receptors (ACE1 and ACE2). Two signaling axes have been identified in the RAS endocrine system that mediate the proliferative actions of angiotensin II (i.e., the AT1R-based pathway) or the anti-proliferative effects of RAS hormones (i.e., the AT2R-, MAS-, and MRGD-based pathways). Disruption of the balance between these two axes can cause different diseases (e.g., cardiovascular pathologies and the severe acute respiratory syndrome coronavirus 2- (SARS-CoV-2)-based COVID-19 disease). It is now accepted that all the components of the RAS endocrine system are expressed in cancer, including cancer of the breast. Breast cancer (BC) is a multifactorial pathology for which there is a continuous need to identify novel drugs. Here, I reviewed the possible roles of both axes of the RAS endocrine network as potential druggable pathways in BC. Remarkably, the analysis of the current knowledge of the different GPCRs of the RAS molecular system not only confirms that AT1R could be considered a drug target and that its inhibition by losartan and candesartan could be useful in the treatment of BC, but also identifies Mas-related GPCR member D (MRGD) as a druggable protein. Overall, the RAS of GPCRs offers multifaceted opportunities for the development of additional compounds for the treatment of BC. Topics: Angiotensin I; Angiotensin II; Breast Neoplasms; Female; Humans; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptors, G-Protein-Coupled; Renin-Angiotensin System | 2020 |
1 trial(s) available for angiotensin-i and Breast-Neoplasms
Article | Year |
---|---|
Phase I/II dose escalation study of angiotensin 1-7 [A(1-7)] administered before and after chemotherapy in patients with newly diagnosed breast cancer.
Multilineage cytopenias occur following myelosuppressive chemotherapy. Most hematopoietic agents differentiate along a single lineage and fail to prevent progressive cytopenias. Angiotensin 1-7 [A(1-7)] is a hematopoietic agent that stimulates the proliferation of multipotential and differentiated progenitor cells in cultured bone marrow and human cord blood. The purpose of this study was to determine the optimal biologic dose and the maximum tolerated dose of A(1-7).. This study determined the safety and activity of A(1-7) following chemotherapy in patients with breast cancer. Toxicity was assessed by administering A(1-7) daily for 7 days followed by a 7-day washout prior to the first cycle of chemotherapy. Beginning 2 days after chemotherapy and continuing daily for at least 10 days, fifteen patients received five different A(1-7) doses and five patients received filgrastim as a comparator group over three cycles of chemotherapy.. No dose-limiting toxicity was observed following A(1-7). The frequency of adverse events was slightly lower in A(1-7) than in filgrastim patients. No patient required a chemotherapy modification due to hematologic toxicity. There was an apparent differential dose-response sensitivity of the various lineages to A(1-7). At a dose of 100 microg/kg, A(1-7) reduced the frequency of grade 2-4 thrombocytopenia, anemia, and grade 3-4 lymphopenia as compared to filgrastim.. These data suggest that A(1-7) may be beneficial in attenuating multilineage cytopenias following chemotherapy at a dose of 100 mug/kg per day. Topics: Adult; Aged; Angiotensin I; Antihypertensive Agents; Antineoplastic Combined Chemotherapy Protocols; Breast Neoplasms; Cyclophosphamide; Dose-Response Relationship, Drug; Doxorubicin; Female; Humans; Maximum Tolerated Dose; Middle Aged; Peptide Fragments; Prospective Studies | 2006 |
4 other study(ies) available for angiotensin-i and Breast-Neoplasms
Article | Year |
---|---|
Angiotensin 1-7 formation in breast tissue is attenuated in breast cancer - a study on the metabolism of angiotensinogen in breast cancer cell lines.
The tissue renin-angiotensin system (RAS) plays an important role in the development and progression of many diseases. It has been confirmed that angiotensin II (ANG II) participates in the proliferation and angiogenesis of breast cancer. Moreover, some RAS dysregulations in cancer have been observed. Recent studies on the role of two opposite axes of angiotensinogen metabolism - ACE (angiotensin-converting enzyme)/ANGII/AT1R (angiotensin receptor type 1) and ACE-2/ANG 1-7/MAS (mitochondrial assembly) - indicate their importance in tumor growth and invasion, but studies describing the metabolic pathways in breast cancer and the role of newer angiotensins, such as ANG 1-12, remain lacking. In this study, the metabolism of angiotensinogen fragments in three breast cancer lines, namely, MDA-MB-231, MCF-7, and T-47D, compared with normal breast tissue cells (PCS-600) was estimated. Incubation of the cancer cells with angiotensinogen resulted in the prevalent formation of ANG 1-7. A difference in the ability to form ANG II was observed between cell lines. In normal breast cells, the strong predominance of the ACE-2/ANG 1-7/MAS pathway was detected. In cancer cells, differences in angiotensinogen metabolism depending on cancer line were observed; the prevalence of the ACE/ANG II/AT1R pathway was shown. Expressions of the RAS component were dysregulated in cancer cells and differed between cell lines. In conclusion, the ability of breast cancer cells to produce numerous angiotensin peptide metabolites was demonstrated. The metabolism of angiotensinogen differed between various types of breast cancer cells. The obtained results indicate the greater importance of the classical pathway - ACE/ANG II/AT1R - in breast cancer cells. The production of ANG 1-12 seems to be marginal in breast tissue, but a tendency for the higher formation of this peptide in cancer cells was observed. The production of ANG 1-7 was significantly lower in cancer cells, whereas the expression of MAS receptor was higher than that in the control. This finding suggests that substances with MAS receptor agonist activity could be useful in the treatment of breast cancer, but this requires further investigations. Topics: Angiotensin I; Angiotensinogen; Breast; Breast Neoplasms; Cell Line; Female; Humans; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled | 2019 |
Downregulation of ACE2/Ang-(1-7)/Mas axis promotes breast cancer metastasis by enhancing store-operated calcium entry.
The renin-angiotensin system (RAS) is an important component of the tumor microenvironment and plays a key role in promoting cancer cell proliferation, angiogenesis, metabolism, migration and invasion. Meanwhile, the arm of angiotensin-converting enzyme (ACE)2/angiotensin-(1-7) [Ang-(1-7)]/Mas axis in connection with RAS is associated with anti-proliferative, vasodilatory and anti-metastatic properties. Previous studies have shown that Ang-(1-7) reduces the proliferation of orthotopic human breast tumor growth by inhibiting cancer-associated fibroblasts. However, the role of ACE/Ang-(1-7)/Mas axis in the metastasis of breast cancer cells is still unknown. In the present study, we found that ACE2 protein level is negatively correlated with the metastatic ability of breast cancer cells and breast tumor grade. Upregulation of ACE2/Ang-(1-7)/Mas axis inhibits breast cancer cell migration and invasion in vivo and in vitro. Mechanistically, ACE2/Ang-(1-7)/Mas axis activation inhibits store-operated calcium entry (SOCE) and PAK1/NF-κB/Snail1 pathways, and induces E-cadherin expression. In summary, our results demonstrate that downregulation of ACE2/Ang-(1-7)/Mas axis stimulates breast cancer metastasis through the activation of SOCE and PAK1/NF-κB/Snail1 pathways. These results provide new mechanisms by which breast cancer develop metastasis and shed light on developing novel anti-metastasis therapeutics for metastatic breast cancer by modulating ACE2/Ang-(1-7)/Mas axis. Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Antigens, CD; Breast Neoplasms; Cadherins; Calcium Signaling; Cell Movement; Down-Regulation; Female; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Neoplastic; Heterografts; Humans; MCF-7 Cells; Mice, Inbred NOD; Mice, SCID; Neoplasm Grading; Neoplasm Metastasis; Neoplasm Transplantation; NF-kappa B; p21-Activated Kinases; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; RNA Interference; Snail Family Transcription Factors; Transfection | 2016 |
Angiotensin-(1-7) reduces fibrosis in orthotopic breast tumors.
Angiotensin-(1-7) [Ang-(1-7)] is an endogenous 7-amino acid peptide hormone of the renin-angiotensin system that has antiproliferative properties. In this study, Ang-(1-7) inhibited the growth of cancer-associated fibroblasts (CAF) and reduced fibrosis in the tumor microenvironment. A marked decrease in tumor volume and weight was observed in orthotopic human breast tumors positive for the estrogen receptor (BT-474 or ZR-75-1) and HER2 (BT-474) following Ang-(1-7) administration to athymic mice. Ang-(1-7) concomitantly reduced interstitial fibrosis in association with a significant decrease in collagen I deposition, along with a similar reduction in perivascular fibrosis. In CAFs isolated from orthotopic breast tumors, the heptapeptide markedly attenuated in vitro growth as well as reduced fibronectin, transforming growth factor-β (TGF-β), and extracellular signal-regulated kinase 1/2 kinase activity. An associated increase in the mitogen-activated protein kinase (MAPK) phosphatase DUSP1 following treatment with Ang-(1-7) suggested a potential mechanism by which the heptapeptide reduced MAPK signaling. Consistent with these in vitro observations, immunohistochemical analysis of Ang-(1-7)-treated orthotopic breast tumors revealed reduced TGF-β and increased DUSP1. Together, our findings indicate that Ang-(1-7) targets the tumor microenvironment to inhibit CAF growth and tumor fibrosis. Topics: Angiotensin I; Animals; Antihypertensive Agents; Blotting, Western; Breast Neoplasms; Carcinoma, Ductal, Breast; Dual Specificity Phosphatase 1; Female; Fibronectins; Fibrosis; Fluorescent Antibody Technique; Humans; Immunoenzyme Techniques; Lung Diseases, Interstitial; Mice; Mice, Nude; Mitogen-Activated Protein Kinase 3; Peptide Fragments; Phosphorylation; Transforming Growth Factor beta; Tumor Cells, Cultured | 2010 |
Angiotensin 1-7 and risk for breast cancer recurrence.
Topics: Angiotensin I; Breast Neoplasms; Cell Division; Peptide Fragments; Recurrence; Risk Factors | 2006 |