angiotensin-i has been researched along with Birth-Weight* in 2 studies
2 other study(ies) available for angiotensin-i and Birth-Weight
Article | Year |
---|---|
Prenatal dehydration alters renin-angiotensin system associated with angiotensin-increased blood pressure in young offspring.
The renin-angiotensin system (RAS) has an important role in cardiovascular homeostasis. This study determined the influence of water deprivation during pregnancy on the development of the RAS in rats, and examined blood pressure (BP) in the adolescent offspring. Pregnant rats were water deprived for 3 days at late gestation, and we examined fetal cardiac ultrastructure, as well as heart angiotensin (Ang) II receptor protein and mRNA, liver angiotensinogen and plasma Ang II concentrations. We also tested cardiovascular responses to i.v. Ang II in the young offspring. In utero exposure to maternal water deprivation significantly decreased fetal body and heart weight, and increased fetal plasma sodium and osmolality. Fetal liver angiotensinogen mRNA, plasma Ang I and Ang II concentrations were also increased. Although fetal AT(1a) and AT(1b) receptor mRNA and AT(1) protein were not changed, AT(2) receptor mRNA and protein levels in the heart were significantly increased following maternal dehydration. Prenatal exposure to maternal water deprivation had no effect on baseline BP; however, it significantly increased BP in response to i.v. Ang II infusion, and decreased baroreflex sensitivity in the offspring. In addition, the heart AT(2) receptor mRNA and protein were higher in the offspring exposed to prenatal dehydration. The results of this study demonstrate that prenatal dehydration affected the RAS development associated with an Ang II-increased BP in fetal origin. Topics: Angiotensin I; Angiotensin II; Angiotensinogen; Animals; Baroreflex; Birth Weight; Blood Pressure; Female; Fetal Development; Gene Expression; Heart; Heart Rate; Hypertension; Liver; Pregnancy; Prenatal Exposure Delayed Effects; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Renin-Angiotensin System; RNA, Messenger; Water Deprivation | 2009 |
Renal Angiotensin receptor type 1 and 2 upregulation in intrauterine growth restriction of newborn piglets.
Epidemiological and experimental studies suggest that intrauterine growth restriction (IUGR) is associated with abnormalities in kidney development which is thought to be linked with alterations causing adult cardiovascular diseases. The renin-angiotensin system (RAS) plays an important role in the development of renal vascular and tubular structures, and is known to be altered by experimentally induced IUGR. These experimental models of IGUR have been criticized because they may have a more severe impact on intrauterine development than that which is normally encountered in humans. Therefore, we asked whether naturally occurring small-for-gestational-age newborn piglets exhibit features of altered RAS activity. We investigated the regional renal expression of angiotensin II type 1 (AT1) and AT2 receptors in normal-weight and IUGR piglets. The AT1 receptor mRNA expression was markedly enhanced in IUGR piglets, in the renal cortex by 64% and in the renal medulla by 52% (p < 0.05, compared with normal littermates). In contrast, mRNA expression for the AT2 receptor was similar in both the normal-weight and IUGR piglets. A significantly higher AT1 receptor protein expression was found in the IUGR piglets (p < 0.05) in the glomeruli, in the proximal and distal tubules, as well as in the collecting ducts by immunohistochemistry. Furthermore, AT2 receptor protein expression was significantly higher in the IUGR piglets (p < 0.05) in the subcapsular nephrogenic zone and in the distal tubules and collecting ducts. Thus, IUGR is accompanied by an upregulation of angiotensin II receptor expression in the kidneys of newborn piglets. This may indicate an alteration of the RAS in newborns suffering from naturally occurring IUGR. Topics: Angiotensin I; Angiotensin II; Animals; Animals, Newborn; Birth Weight; Female; Fetal Growth Retardation; Kidney; Kidney Cortex; Kidney Medulla; Reference Values; Renin-Angiotensin System; Swine; Up-Regulation | 2006 |