angiotensin-amide and Disease-Models--Animal

angiotensin-amide has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for angiotensin-amide and Disease-Models--Animal

ArticleYear
Urine formaldehyde level is inversely correlated to mini mental state examination scores in senile dementia.
    Neurobiology of aging, 2011, Volume: 32, Issue:1

    It is widely known that exogenous formaldehyde exposure induces human cognitive impairment and animal memory loss; and recent studies show that formaldehyde at pathological levels induces Aβ deposition and misfolding of tau protein to form globular amyloid-like aggregates. Endogenous formaldehyde may be a marker for progressive senile dementia. The aim of this study was to investigate the correlation of endogenous formaldehyde in urine of senile dementia and mini mental state examination (MMSE) scores. Formaldehyde level was analyzed by high-performance liquid chromatography (with fluorescence detection) in human urine from dementia patients (n=141), patients with hypertension (n=33) or diabetes (n=16) and healthy individuals (n=38), autopsy hippocampus samples from Alzheimer's disease (AD) patients and brains of three types of AD animal model: namely, senescence accelerated mice (SAMP8), APP-transgenic mice and APP/PS1-transgenic mice. In a double-blind study, there was marked elevation of urine formaldehyde levels in patients (n=91) with dementia, and a slight increase in patients (n=50) with mild cognitive impairment. Urine formaldehyde level was inversely correlated with mini mental state examination scores (Rs=-0.441, p<0.0001). Furthermore, formaldehyde levels were significantly increased in the autopsy hippocampus from Alzheimer's patients (n=4). In SAMP8 brains the formaldehyde level was significantly increased, suggesting that the endogenous formaldehyde is related to aging in mice. The brain formaldehyde level in APP/PS1-transgenic (n=8) mice at age of 3 months and APP-transgenic (n=8) mice at age of 6 months was increased (0.56 ± 0.02 mM), respectively, as compared with their respective age-matched controls, when these two types of AD-like animals, respectively, started to form Aβ deposits and memory loss obviously. According to the level of formaldehyde in the brain of the transgenic mice, we treated normal mice with formaldehyde (0.5mM, intraperitoneal administration) and observed the memory loss of the animal in Morris water maze trial. Cognitive impairments for the senile dementia are probably related to endogenous formaldehyde levels; and the mini mental state examination scores referred to the evaluation of urine formaldehyde level in dementia patients may be used as a non-invasive method for the investigation and diagnosis of senile dementia.

    Topics: Age Factors; Aging; Alzheimer Disease; Amyloid beta-Protein Precursor; Angiotensin Amide; Animals; Chromatography, High Pressure Liquid; Disease Models, Animal; Female; Formaldehyde; Hippocampus; Humans; Male; Maze Learning; Memory Disorders; Mental Status Schedule; Mice; Mice, Transgenic; Neuropsychological Tests; Presenilin-1; Statistics as Topic

2011
Elevated retinol binding protein 4 contributes to insulin resistance in spontaneously hypertensive rats.
    Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 2011, Volume: 43, Issue:5

    Retinol binding protein 4 (RBP4) is an adipokine secreted by adipose tissue and liver and contributes to insulin resistance (IR) in animals. Although several human studies indicated that RBP4 is positively correlated with blood pressure and is elevated in untreated hypertensive subjects, the role of RBP4 in IR of hypertensive animals still remains obscure. In this study, spontaneously hypertensive rats (SHR) were used to investigate the relationship between RBP4 levels and IR. We found that at 7 weeks old, SHR had significantly increased plasma RBP4 levels and RBP4 expression in liver and epididymal adipose tissue accompanied by worsening of IR as compared with Wistar-Kyoto (WKY) control rats. Administration of fenretinide in SHR to increase urinary RBP4 excretion significantly decreased plasma RBP4 levels and improved IR. Moreover, treatment with valsartan markedly reduced blood pressure, circulating RBP4 and adiponectin levels, and IR in SHR. Valsartan also reversed the increase of hepatic gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) and the decrease of type 4 glucose transporter (GLUT4) in adipose tissue. In conclusion, these results suggest that RBP4 contributes, at least partly, to the pathogenesis of IR in SHR. Furthermore, the decrease of blood pressure caused by valsartan not only decreased RBP4 levels, but also improved IR in SHR.

    Topics: Angiotensin Amide; Animals; Disease Models, Animal; Humans; Insulin Resistance; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Retinol-Binding Proteins, Plasma

2011