angiotensin-a and Hypertension

angiotensin-a has been researched along with Hypertension* in 2 studies

Reviews

1 review(s) available for angiotensin-a and Hypertension

ArticleYear
Hypertension regulating angiotensin peptides in the pathobiology of cardiovascular disease.
    Clinical and experimental hypertension (New York, N.Y. : 1993), 2018, Volume: 40, Issue:4

    Renin angiotensin system (RAS) is an endogenous hormone system involved in the control of blood pressure and fluid volume. Dysregulation of RAS has a pathological role in causing cardiovascular diseases through hypertension. Among several key components of RAS, angiotensin peptides, varying in amino acid length and biological function, have important roles in preventing or promoting hypertension, cardiovascular diseases, stroke, vascular remodeling etc. These peptides are generated by the metabolism of inactive angiotensinogen or its derived peptides by hydrolyzing action of certain enzymes. Angiotensin II, angiotensin (1-12), angiotensin A and angiotensin III bind primarily to angiotensin II type 1 receptor and cause vasoconstriction, accumulation of inflammatory markers to sub-endothelial region of blood vessels and activate smooth muscle cell proliferation. Moreover, when bound to angiotensin II type 2 receptor, angiotensin II works as cardio-protective peptide and halt pathological cell signals. Other peptides like angiotensin (1-9), angiotensin (1-7), alamandine and angiotensin IV also help in protecting from cardiovascular diseases by binding to their respective receptors.

    Topics: Angiotensin I; Angiotensin II; Angiotensin III; Angiotensinogen; Angiotensins; Animals; Blood Pressure; Humans; Hypertension; Oligopeptides; Peptide Fragments; Protective Factors; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Renin-Angiotensin System; Signal Transduction; Vasoconstriction

2018

Other Studies

1 other study(ies) available for angiotensin-a and Hypertension

ArticleYear
Pressor and renal hemodynamic effects of the novel angiotensin A peptide are angiotensin II type 1A receptor dependent.
    Hypertension (Dallas, Tex. : 1979), 2011, Volume: 57, Issue:5

    Recently, a new derivative of angiotensin (Ang) II, called "Ang A," has been discovered to be present in plasma of healthy humans and, in increased concentrations, in end-stage renal failure patients. The objectives of the study were to investigate the blood pressure and renal hemodynamic responses to Ang A in normotensive and hypertensive rats and in genetically modified mice and the binding properties of Ang A to Ang II type 1 (AT(1)) or Ang II type 2 (AT(2)) receptors. Intravenous and intrarenal administration of Ang A induced dose-dependent pressor and renal vasoconstrictor responses in normotensive rats, which were blocked by the AT(1) receptor antagonist candesartan but were not altered by the AT(2) receptor ligands PD123319, CGP42112A, or compound 21. Similar responses were observed after intravenous administration in spontaneously hypertensive rats. Deletion of AT(1a) receptors in mice almost completely abolished the pressor and renal vasoconstrictor responses to Ang A, indicating that its effects are mediated via AT(1a) receptors. Ang A was less potent than Ang II in vivo. The in vitro study demonstrated that Ang A is a full agonist for AT(1) receptors, with similar affinity for AT(1) and AT(2) receptors as Ang II. Overall, the responses to Ang A and Ang II were similar. Ang A has no physiological role to modulate the pressor and renal hemodynamic effects of Ang II.

    Topics: Angiotensin II Type 1 Receptor Blockers; Angiotensins; Animals; Benzimidazoles; Biphenyl Compounds; Blood Pressure; Dose-Response Relationship, Drug; Hypertension; Kidney; Male; Mice; Mice, Knockout; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptor, Angiotensin, Type 1; Renal Circulation; Statistics, Nonparametric; Tetrazoles; Vasoconstriction

2011