anemoside-a3 has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for anemoside-a3 and Disease-Models--Animal
Article | Year |
---|---|
Anemoside A3 rapidly reverses depression-like behaviors and weakening of excitatory synaptic transmission in mouse models of depression.
Developing fast-acting antidepressants attracts considerable attention. Anemoside A3, a natural triterpenoid glycoside isolated from Pulsatillae Radix, has been reported to produce antidepressant-like action in the forced swim test. We herein explore the fast-onset antidepressant-like potentials and antidepressant mechanisms of anemoside A3.. The forced swim test and tail suspension test were used to determine the acute antidepressant-like action of anemoside A3. This action of anemoside A3 was confirmed in chronic mild stress and chronic social defeat stress models. In vitro extracellular field potential recordings were conducted to investigate the impact of anemoside A3 on chronic stress-induced alterations at temporoammonic-CA1 synapses. Western blot, whole-cell patch-clamp recordings, and microinjections of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor antagonists into the stratum lacunosum-moleculare were performed to unravel the contribution of stratum lacunosum-moleculare α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors to anemoside A3's antidepressant-like activity. In vivo microdialysis and pharmacological depletion of serotonin were implemented to examine the role of the serotonin system in the antidepressant-like effect of anemoside A3.. Anemoside A3 administered intraperitoneally displayed acute antidepressant-like effects in the mouse forced swim test and tail suspension test and anemoside A3 treatment (intraperitoneally) for five days was sufficient to reverse depression-related behaviors of mice subjected to chronic stress. Accordingly, chronic social defeat stress-induced weakening of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor-mediated neurotransmission in the temporoammonic-CA1 pathway and downregulation of synaptic GluA2-lacking α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor expression in the stratum lacunosum-moleculare could both be normalized by five days of anemoside A3 treatment (intraperitoneally). Moreover, intra-stratum lacunosum-moleculare infusion of GluA2-lacking α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor antagonist abolished anemoside A3's antidepressant-like effect. Lastly, serotonin system was not implicated in anemoside A3's antidepressant-like effect.. Our results suggest that anemoside A3 induces a rapid antidepressant-like response by a stratum lacunosum-moleculare GluA2-lacking α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor-dependent mechanism. In view of this, anemoside A3 represents a promising agent for depression treatment. Topics: Animals; Antidepressive Agents; Behavior, Animal; Depression; Disease Models, Animal; Male; Mice; Mice, Inbred C57BL; Saponins; Stress, Psychological; Swimming; Synaptic Transmission; Triterpenes | 2019 |
Anemoside A3 Enhances Cognition through the Regulation of Synaptic Function and Neuroprotection.
Compounds that have the ability to both strengthen synaptic function and facilitate neuroprotection are valuable cognitive enhancers that may improve health and quality of life, as well as retard age-related cognitive deterioration. Medicinal plants are an abundant source of potential cognitive enhancers. Here we report that anemoside A3 (AA3) isolated from Pulsatilla chinensis modulates synaptic connectivity in circuits central to memory enhancement. AA3 specifically modulates the function of AMPA-type glutamate receptors (AMPARs) by increasing serine phosphorylation within the GluA1 subunit, which is a modification required for the trafficking of GluA1-containing AMPARs to synapses. Furthermore, AA3 administration activates several synaptic signaling molecules and increases protein expressions of the neurotrophin brain-derived neurotrophic factor and monoamine neurotransmitters in the mouse hippocampus. In addition to acting through AMPARs, AA3 also acts as a non-competitive NMDA receptor (NMDAR) modulator with a neuroprotective capacity against ischemic brain injury and overexcitation in rats. These findings collectively suggest that AA3 possesses a unique ability to modulate the functions of both AMPARs and NMDARs. Concordantly, behavioral studies indicate that AA3 not only facilitates hippocampal long-term potentiation but also enhances spatial reference memory formation in mice. These multifaceted roles suggest that AA3 is an attractive candidate for further development as a cognitive enhancer capable of alleviating memory dysfunctions associated with aging and neurodegenerative diseases. Topics: Animals; Cognition; Disease Models, Animal; Escape Reaction; Excitatory Postsynaptic Potentials; Exploratory Behavior; Hippocampus; In Vitro Techniques; Infarction, Middle Cerebral Artery; MAP Kinase Signaling System; Maze Learning; Mice; Mice, Inbred C57BL; Mice, Inbred ICR; N-Methylaspartate; Nerve Net; Neuroprotective Agents; Prefrontal Cortex; Rats; Rats, Sprague-Dawley; Saponins; Spatial Navigation; Synapses; Triterpenes | 2015 |