androst-16-en-3-one has been researched along with Inflammation* in 2 studies
2 other study(ies) available for androst-16-en-3-one and Inflammation
Article | Year |
---|---|
Influence of the inflammatory status of entire male pigs on their pubertal development and fat androstenone.
Androstenone production increases during pubertal development and plays a major role in boar taint. The objective of the present study was to evaluate the effect of a subclinical inflammation on the pubertal development of boars and hence on fat androstenone. Contrasted hygiene conditions were applied during rearing to increase the variability of the inflammatory status. Boars from a commercial cross line were allocated at 139±0.9 days of age (Day 0) and 81.3±5.9 kg of live weight either to Good (n=61) or Poor (n=54) hygiene conditions until slaughter at 172.9±4.8 days of age and 116.7±4.5 kg live weight. Inflammatory status, growth and pubertal development were evaluated on Day 0, Day 27 and at slaughter by analysing the blood formula, plasma inflammatory proteins; testosterone and oestradiol, salivary cortisol, rectal temperature, live weight, back fat thickness, weight of reproductive organs and clinical scores of organs (lungs, stomach, snout). Fat was collected on Day 27 by biopsy and at slaughter to measure androstenone concentration. A principal component analysis including inflammatory indicators followed by a clustering procedure was performed to identify pigs with a high (Infl+, n=50) or a low (Infl-, n=65) inflammatory status. Infl+ pigs had more granulocytes/ml, higher concentrations of haptoglobin, C-reative protein and cortisol (P<0.05), lower growth rate and higher lung pneumonia score. However, regardless of stage, the inflammatory status had no significant effect on plasma testosterone or oestradiol, fat androstenone or sexual organ development. Present data suggest that a mild inflammatory status has no influence on pubertal development or fat concentration of androstenone in boars. Topics: Adipose Tissue; Androstenes; Animals; Estradiol; Inflammation; Male; Reproduction; Sexual Maturation; Steroids; Swine; Testosterone | 2017 |
Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
This protocol describes microsphere-based protease assays for use in flow cytometry and high-throughput screening. This platform measures a loss of fluorescence from the surface of a microsphere due to the cleavage of an attached fluorescent protease substrate by a suitable protease enzyme. The assay format can be adapted to any site or protein-specific protease of interest and results can be measured in both real time and as endpoint fluorescence assays on a flow cytometer. Endpoint assays are easily adapted to microplate format for flow cytometry high-throughput analysis and inhibitor screening. Topics: Animals; Biotinylation; Flow Cytometry; Fluorescence Resonance Energy Transfer; Green Fluorescent Proteins; High-Throughput Screening Assays; Humans; Inflammation; Kinetics; Microspheres; Peptide Hydrolases; Peptides; Reproducibility of Results; Temperature | 2010 |