anantin and Disease-Models--Animal

anantin has been researched along with Disease-Models--Animal* in 3 studies

Other Studies

3 other study(ies) available for anantin and Disease-Models--Animal

ArticleYear
Inefficient constitutive inhibition of P2X3 receptors by brain natriuretic peptide system contributes to sensitization of trigeminal sensory neurons in a genetic mouse model of familial hemiplegic migraine.
    Molecular pain, 2016, Volume: 12

    On trigeminal ganglion neurons, pain-sensing P2X3 receptors are constitutively inhibited by brain natriuretic peptide via its natriuretic peptide receptor-A. This inhibition is associated with increased P2X3 serine phosphorylation and receptor redistribution to non-lipid raft membrane compartments. The natriuretic peptide receptor-A antagonist anantin reverses these effects. We studied whether P2X3 inhibition is dysfunctional in a genetic familial hemiplegic migraine type-1 model produced by introduction of the human pathogenic R192Q missense mutation into the mouse CACNA1A gene (knock-in phenotype). This model faithfully replicates several properties of familial hemiplegic migraine type-1, with gain-of-function of CaV2.1 Ca(2+) channels, raised levels of the algogenic peptide calcitonin gene-related peptide, and enhanced activity of P2X3 receptors in trigeminal ganglia.. In knock-in neurons, anantin did not affect P2X3 receptor activity, membrane distribution, or serine phosphorylation level, implying ineffective inhibition by the constitutive brain natriuretic peptide/natriuretic peptide receptor-A pathway. However, expression and functional properties of this pathway remained intact together with its ability to downregulate TRPV1 channels. Reversing the familial hemiplegic migraine type-1 phenotype with the CaV2.1-specific antagonist, ω-agatoxin IVA restored P2X3 activity to wild-type level and enabled the potentiating effects of anantin again. After blocking calcitonin gene-related peptide receptors, P2X3 receptors exhibited wild-type properties and were again potentiated by anantin.. P2X3 receptors on mouse trigeminal ganglion neurons are subjected to contrasting modulation by inhibitory brain natriuretic peptide and facilitatory calcitonin gene-related peptide that both operate via complex intracellular signaling. In the familial hemiplegic migraine type-1 migraine model, the action of calcitonin gene-related peptide appears to prevail over brain natriuretic peptide, thus suggesting that peripheral inhibition of P2X3 receptors becomes insufficient and contributes to trigeminal pain sensitization.

    Topics: Animals; Calcitonin Gene-Related Peptide Receptor Antagonists; Disease Models, Animal; Gene Knock-In Techniques; Mice; Migraine with Aura; Models, Biological; Natriuretic Peptide, Brain; omega-Agatoxin IVA; Peptides, Cyclic; Phenotype; Purinergic P2X Receptor Antagonists; Receptors, Atrial Natriuretic Factor; Receptors, Calcitonin Gene-Related Peptide; Receptors, Purinergic P2X3; Sensory Receptor Cells; Trigeminal Ganglion; TRPV Cation Channels

2016
Loss of inhibition by brain natriuretic peptide over P2X3 receptors contributes to enhanced spike firing of trigeminal ganglion neurons in a mouse model of familial hemiplegic migraine type-1.
    Neuroscience, 2016, 09-07, Volume: 331

    Purinergic P2X3 receptors (P2X3Rs) play an important role in pain pathologies, including migraine. In trigeminal neurons, P2X3Rs are constitutively downregulated by endogenous brain natriuretic peptide (BNP). In a mouse knock-in (KI) model of familial hemiplegic migraine type-1 with upregulated calcium CaV2.1 channel function, trigeminal neurons exhibit hyperexcitability with gain-of-function of P2X3Rs and their deficient BNP-mediated inhibition. We studied whether the absent BNP-induced control over P2X3Rs activity in KI cultures may be functionally expressed in altered firing activity of KI trigeminal neurons. Patch-clamp experiments investigated the excitability of wild-type and KI trigeminal neurons induced by either current or agonists for P2X3Rs or transient receptor potential vanilloid-1 (TRPV1) receptors. Consistent with the constitutive inhibition of P2X3Rs by BNP, sustained pharmacological block of BNP receptors selectively enhanced P2X3R-mediated excitability of wild-type neurons without affecting firing evoked by the other protocols. This effect included increased number of action potentials, lower spike threshold and shift of the firing pattern distribution toward higher spiking activity. Thus, inactivation of BNP signaling transformed the wild-type excitability phenotype into the one typical for KI. BNP receptor block did not influence excitability of KI neurons in accordance with the lack of BNP-induced P2X3R modulation. Our study suggests that, in wild-type trigeminal neurons, negative control over P2X3Rs by the BNP pathway is translated into tonic suppression of P2X3Rs-mediated excitability. Lack of this inhibition in KI cultures results in a hyperexcitability phenotype and might contribute to facilitated trigeminal pain transduction relevant for migraine.

    Topics: Action Potentials; Adenosine Triphosphate; Animals; Capsaicin; Cells, Cultured; Cerebellar Ataxia; Disease Models, Animal; Electric Stimulation; Mice, Transgenic; Migraine Disorders; Natriuretic Peptide, Brain; Neural Inhibition; Neurons; Neurotransmitter Agents; Patch-Clamp Techniques; Peptides, Cyclic; Receptors, Atrial Natriuretic Factor; Receptors, Purinergic P2X3; Trigeminal Ganglion; TRPV Cation Channels

2016
Response of cardiac mast cells to atrial natriuretic peptide.
    American journal of physiology. Heart and circulatory physiology, 2007, Volume: 293, Issue:2

    Previously, our laboratory demonstrated that cardiac mast cell degranulation induces adverse ventricular remodeling in response to chronic volume overload. The purpose of this study was to investigate whether atrial natriuretic peptide (ANP), which is known to be elevated in chronic volume overload, causes cardiac mast cell degranulation. Relative to control, ANP induced significant histamine release from peritoneal mast cells, whereas isolated cardiac mast cells were not responsive. Infusion of ANP (225 pg/ml) into blood-perfused isolated rat hearts produced minimal activation of cardiac mast cells, similar to that seen in the control group. ANP also did not increase matrix metalloproteinase-2 activity, reduce collagen volume fraction, or alter diastolic or systolic cardiac function compared with saline-treated controls. In a subsequent study to evaluate the effects of natriuretic peptide receptor antagonism on volume overload-induced ventricular remodeling, anantin was administered to rats with an aortocaval fistula. Comparable increases of myocardial MMP-2 activity in treated and untreated rats with an aortocaval fistula were associated with equivalent decreases in ventricular collagen (P < 0.05 vs. sham-operated controls). Cardiac functional parameters and left ventricular hypertrophy were unaffected by anantin. We conclude that ANP is not a cardiac mast cell secretagogue and is not responsible for the cardiac mast cell-mediated adverse ventricular remodeling in response to volume overload.

    Topics: Animals; Aorta, Abdominal; Arteriovenous Fistula; Ascitic Fluid; Atrial Natriuretic Factor; Cell Degranulation; Collagen; Disease Models, Animal; Histamine Release; Hypertrophy, Left Ventricular; In Vitro Techniques; Male; Mast Cells; Matrix Metalloproteinase 2; Myocardium; Peptides, Cyclic; Rats; Rats, Sprague-Dawley; Vena Cava, Inferior; Ventricular Function, Left; Ventricular Remodeling

2007