anandamide has been researched along with Vomiting* in 5 studies
5 other study(ies) available for anandamide and Vomiting
Article | Year |
---|---|
Anandamide transport inhibition by ARN272 attenuates nausea-induced behaviour in rats, and vomiting in shrews (Suncus murinus).
To understand how anandamide transport inhibition impacts the regulation of nausea and vomiting and the receptor level mechanism of action involved. In light of recent characterization of an anandamide transporter, fatty acid amide hydrolase-1-like anandamide transporter, to provide behavioural support for anandamide cellular reuptake as a facilitated transport process.. The systemic administration of the anandamide transport inhibitor ARN272 ([(4-(5-(4-hydroxy-phenyl)-3,4-diaza-bicyclo[4.4.0]deca-1(6),2,4,7,9-pentaen-2-ylamino)-phenyl)-phenylamino-methanone]) was used to evaluate the prevention of LiCl-induced nausea-induced behaviour (conditioned gaping) in rats, and LiCl-induced emesis in shrews (Suncus murinus). The mechanism of how prolonging anandamide availability acts to regulate nausea in rats was explored by the antagonism of cannabinoid 1 (CB1) receptors with the systemic co-administration of SR141716.. The systemic administration of ARN272 produced a dose-dependent suppression of nausea-induced conditioned gaping in rats, and produced a dose-dependent reduction of vomiting in shrews. The systemic co-administration of SR141716 with ARN272 (at 3.0 mg·kg(-1)) in rats produced a complete reversal of ARN272-suppressed gaping at 1.0 mg·kg(-1). SR141716 alone did not differ from the vehicle solution.. These results suggest that anandamide transport inhibition by the compound ARN272 tonically activates CB1 receptors and as such produces a type of indirect agonism to regulate toxin-induced nausea and vomiting. The results also provide behavioural evidence in support of a facilitated transport mechanism used in the cellular reuptake of anandamide. Topics: Amidohydrolases; Animals; Antiemetics; Arachidonic Acids; Behavior, Animal; Biological Transport; Cannabinoid Receptor Antagonists; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Isoenzymes; Lithium Chloride; Male; Nausea; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Rimonabant; Shrews; Vomiting | 2013 |
The FAAH inhibitor URB-597 interferes with cisplatin- and nicotine-induced vomiting in the Suncus murinus (house musk shrew).
Considerable evidence implicates the endocannabinoid system as a neuromodulator of nausea and vomiting. The action of anandamide (AEA) can be prolonged by inhibiting its degradation, through the use of URB597 (URB), a Fatty Acid Amide Hydrolase (FAAH) enzyme inhibitor. Here we present evidence that the FAAH inhibitor, URB, interferes with cisplatin- and nicotine-induced vomiting in the Suncus murinus. In Experiment 1, shrews were injected with URB (0.9 mg/kg) or vehicle 120 min prior to the behavioral testing. They received a second injection of AEA (5 mg/kg) or vehicle 15 min prior to being injected with cisplatin (20 mg/kg) or saline and the number of vomiting episodes were counted for 60 min. In Experiment 2, shrews were injected with vehicle or URB (0.9 mg/kg) 120 min prior to receiving an injection of nicotine (5 mg/kg) or saline and the number of vomiting episodes were counted for 15 min. Experiment 3 evaluated the potential of the CB(1) antagonist, SR141716, to reverse the effect of URB on nicotine-induced vomiting. URB attenuated vomiting produced by cisplatin and nicotine and the combination of URB+AEA suppressed vomiting produced by cisplatin. The effect of URB on nicotine-induced vomiting was reversed by SR141716. These data suggest that the EC system plays a tonic role in the regulation of toxin-induced vomiting. Topics: Amidohydrolases; Animals; Arachidonic Acids; Benzamides; Carbamates; Cisplatin; Drug Interactions; Endocannabinoids; Female; Male; Nicotine; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Rimonabant; Shrews; Vomiting | 2009 |
Effects of the FAAH inhibitor, URB597, and anandamide on lithium-induced taste reactivity responses: a measure of nausea in the rat.
The endogenous cannabinoid system plays a vital role in the control of nausea and emesis. Because of the rapid breakdown and hydrolysis of endocannabinoids, such as anandamide, the therapeutic effects may be enhanced by prolonging their duration of action.. The present experiment evaluated the potential of various doses of URB597, a fatty acid amide hydrolase (FAAH) inhibitor, alone and in combination with systemic administration of anandamide to modulate the establishment of lithium-induced conditioned taste reactivity responses in rats.. In experiment 1, on the conditioning day, rats first received an injection of 0.3 mg/kg URB597, 0.15 mg/kg URB597, or vehicle and then received a second injection of anandamide (5 mg/kg) or vehicle, before a 3-min exposure of 0.1% saccharin by intraoral infusion. Immediately after the saccharin exposure, the rats were injected with lithium chloride. On each of three test days, rats received a 3-min intraoral infusion of saccharin solution, and the taste reactivity responses were videotaped and monitored. In experiment 2, the effects of pretreatment with the CB(1) antagonist, AM-251, on URB597 and anandamide-induced suppressed aversion was evaluated.. Administration of URB597 alone and in combination with anandamide reduced active rejection reactions elicited by a LiCl-paired saccharin solution; both effects were reversed by pretreatment with AM-251, suggesting that they were CB(1) receptor mediated.. The results suggest that prolonging the action of anandamide by pretreatment with the FAAH inhibitor, URB597, suppresses lithium-induced nausea in the rat. Topics: Amidohydrolases; Animals; Arachidonic Acids; Association Learning; Avoidance Learning; Benzamides; Carbamates; Conditioning, Classical; Dose-Response Relationship, Drug; Endocannabinoids; Injections, Intraperitoneal; Lithium Chloride; Male; Nausea; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Long-Evans; Receptor, Cannabinoid, CB1; Vomiting | 2007 |
Arvanil, anandamide and N-arachidonoyl-dopamine (NADA) inhibit emesis through cannabinoid CB1 and vanilloid TRPV1 receptors in the ferret.
Cannabinoid (CB) agonists suppress nausea and vomiting (emesis). Similarly, transient receptor potential vanilloid-1 (TRPV1) receptor agonists are anti-emetic. Arvanil, N-(3-methoxy-4-hydroxy-benzyl)-arachidonamide, is a synthetic 'hybrid' agonist of CB1 and TRPV1 receptors. Anandamide and N-arachidonoyl-dopamine (NADA) are endogenous agonists at both these receptors. We investigated if arvanil, NADA and anandamide were anti-emetic in the ferret and their mechanism of action. All compounds reduced the episodes of emesis in response to morphine 6 glucuronide. These effects were attenuated by AM251, a CB1 antagonist that was pro-emetic per se, and TRPV1 antagonists iodoresiniferatoxin and AMG 9810, which were without pro-emetic effects. Similar sensitivity to arvanil and NADA was found for prodromal signs of emesis. We analysed the distribution of TRPV1 receptors in the ferret brainstem and, for comparison, the co-localization of CB1 and TRPV1 receptors in the mouse brainstem. TRPV1 immunoreactivity was largely restricted to the nucleus of the solitary tract of the ferret, with faint labeling in the dorsal motor nucleus of the vagus and sparse distribution in the area postrema. A similar distribution of TRPV1, and its extensive co-localization with CB1, was observed in the mouse. Our findings suggest that CB1 and TRPV1 receptors in the brainstem play a major role in the control of emesis by agonists of these two receptors. While there appears to be an endogenous 'tone' of CB1 receptors inhibiting emesis, this does not seem to be the case for TRPV1 receptors, indicating that endogenously released endocannabinoids/endovanilloids inhibit emesis preferentially via CB1 receptors. Topics: Acrylamides; Animals; Antiemetics; Arachidonic Acids; Area Postrema; Autonomic Pathways; Brain Stem; Bridged Bicyclo Compounds, Heterocyclic; Cannabinoids; Capsaicin; Dopamine; Emetics; Endocannabinoids; Ferrets; Male; Mice; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Solitary Nucleus; TRPV Cation Channels; Vagus Nerve; Vomiting | 2007 |
Identification and functional characterization of brainstem cannabinoid CB2 receptors.
The presence and function of CB2 receptors in central nervous system (CNS) neurons are controversial. We report the expression of CB2 receptor messenger RNA and protein localization on brainstem neurons. These functional CB2 receptors in the brainstem were activated by a CB2 receptor agonist, 2-arachidonoylglycerol, and by elevated endogenous levels of endocannabinoids, which also act at CB1 receptors. CB2 receptors represent an alternative site of action of endocannabinoids that opens the possibility of nonpsychotropic therapeutic interventions using enhanced endocannabinoid levels in localized brain areas. Topics: Animals; Arachidonic Acids; Blotting, Western; Brain Stem; Cannabinoid Receptor Modulators; Cannabinoids; Cerebellum; Cerebral Cortex; Endocannabinoids; Ferrets; Immunohistochemistry; Mice; Polyunsaturated Alkamides; Rats; Receptor, Cannabinoid, CB2; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Vomiting | 2005 |