anandamide and Stress-Disorders--Post-Traumatic

anandamide has been researched along with Stress-Disorders--Post-Traumatic* in 9 studies

Other Studies

9 other study(ies) available for anandamide and Stress-Disorders--Post-Traumatic

ArticleYear
Traumatic Stress, Chronic Ethanol Exposure, or the Combination, Alter Cannabinoid System Components in Reward and Limbic Regions of the Mouse Brain.
    Molecules (Basel, Switzerland), 2021, Apr-06, Volume: 26, Issue:7

    The cannabinoid system is independently affected by stress and chronic ethanol exposure. However, the extent to which co-occurrence of traumatic stress and chronic ethanol exposure modulates the cannabinoid system remains unclear. We examined levels of cannabinoid system components, anandamide, 2-arachidonoylglycerol, fatty acid amide hydrolase, and monoacylglycerol lipase after mouse single-prolonged stress (mSPS) or non-mSPS (Control) exposure, with chronic intermittent ethanol (CIE) vapor or without CIE vapor (Air) across several brain regions using ultra-high-performance liquid chromatography tandem mass spectrometry or immunoblotting. Compared to mSPS-Air mice, anandamide and 2-arachidonoylglycerol levels in the anterior striatum were increased in mSPS-CIE mice. In the dorsal hippocampus, anandamide content was increased in Control-CIE mice compared to Control-Air, mSPS-Air, or mSPS-CIE mice. Finally, amygdalar anandamide content was increased in Control-CIE mice compared to Control-Air, or mSPS-CIE mice, but the anandamide content was decreased in mSPS-CIE compared to mSPS-Air mice. Based on these data we conclude that the effects of combined traumatic stress and chronic ethanol exposure on the cannabinoid system in reward pathway regions are driven by CIE exposure and that traumatic stress affects the cannabinoid components in limbic regions, warranting future investigation of neurotherapeutic treatment to attenuate these effects.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Cannabinoids; Endocannabinoids; Ethanol; Glycerides; Limbic System; Male; Mice, Inbred C57BL; Monoacylglycerol Lipases; Polyunsaturated Alkamides; Reward; Stress Disorders, Post-Traumatic

2021
Neuropeptide Y and cannabinoids interaction in the amygdala after exposure to shock and reminders model of PTSD.
    Neuropharmacology, 2020, 01-01, Volume: 162

    Topics: Amygdala; Animals; Arachidonic Acids; Arousal; Basolateral Nuclear Complex; Behavior, Animal; Benzamides; Carbamates; Depression; Disease Models, Animal; Endocannabinoids; Extinction, Psychological; Neuropeptide Y; Polyunsaturated Alkamides; Rats; Receptor, Cannabinoid, CB1; Receptors, Neuropeptide Y; Reflex, Startle; Social Behavior; Stress Disorders, Post-Traumatic

2020
Protective effects of elevated anandamide on stress and fear-related behaviors: translational evidence from humans and mice.
    Molecular psychiatry, 2020, Volume: 25, Issue:5

    Post-traumatic stress disorder (PTSD) is a common, debilitating condition with limited treatment options. Extinction of fear memories through prolonged exposure therapy, the primary evidence-based behavioral treatment for PTSD, has only partial efficacy. In mice, pharmacological inhibition of fatty acid amide hydrolase (FAAH) produces elevated levels of anandamide (AEA) and promotes fear extinction, suggesting that FAAH inhibitors may aid fear extinction-based treatments. A human FAAH 385C->A substitution encodes an FAAH enzyme with reduced catabolic efficacy. Individuals homozygous for the FAAH 385A allele may therefore offer a genetic model to evaluate the impact of elevations in AEA signaling in humans, helping to inform whether FAAH inhibitors have the potential to facilitate fear extinction therapy for PTSD. To overcome the challenge posed by low frequency of the AA genotype (appr. 5%), we prospectively genotyped 423 individuals to examine the balanced groups of CC, AC, and AA individuals (n = 25/group). Consistent with its loss-of-function nature, the A allele was dose dependently associated with elevated basal AEA levels, facilitated fear extinction, and enhanced the extinction recall. Moreover, the A-allele homozygotes were protected against stress-induced decreases in AEA and negative emotional consequences of stress. In a humanized mouse model, AA homozygous mice were similarly protected against stress-induced decreases in AEA, both in the periphery, and also in the amygdala and prefrontal cortex, brain structures critically involved in fear extinction and regulation of stress responses. Collectively, these data suggest that AEA signaling can temper aspects of the stress response and that FAAH inhibition may aid the treatment for stress-related psychiatric disorders, such as PTSD.

    Topics: Adolescent; Adult; Amidohydrolases; Animals; Arachidonic Acids; Endocannabinoids; Extinction, Psychological; Fear; Female; Humans; Male; Mice; Polyunsaturated Alkamides; Protective Agents; Stress Disorders, Post-Traumatic; Young Adult

2020
Loss of exercise- and stress-induced increases in circulating 2-arachidonoylglycerol concentrations in adults with chronic PTSD.
    Biological psychology, 2019, Volume: 145

    The endocannabinoid (eCB) system is a modulatory system that is both altered by stress and mediates the effects of acute stress, including contributing to restoration of homeostasis. Earlier studies suggest that circulating eCBs are dysregulated in adults with post-traumatic stress disorder (PTSD); however, it is not known whether circulating eCBs remain responsive to stress. The purpose of this study was to examine eCB and psychological responses to physical (exercise) and psychosocial (Trier Social Stress Test) stressors, using a randomized, counterbalanced procedure in adults with PTSD and healthy controls (N = 20, mean age = 24, SD = 7 yrs). Results from mixed-design, repeated measures ANOVAs revealed significant increases (p <  .05) in N-arachidonoylethanolamine (AEA) and oleoylethanolamide (OEA) following exercise and psychosocial stress in both groups. However, only the control group exhibited a significant increase (p < .05) in 2-arachidonoylglycerol (2-AG) following exercise and psychosocial stress exposure. These data extend our current understanding of circulating eCB responsiveness in PTSD, and provide preliminary evidence to suggest that the eCB system is hypoactive in PTSD following exposure to physical and psychosocial stressors.

    Topics: Adult; Arachidonic Acids; Chronic Disease; Endocannabinoids; Exercise; Glycerides; Humans; Male; Oleic Acids; Polyunsaturated Alkamides; Stress Disorders, Post-Traumatic; Stress, Psychological; Young Adult

2019
Chronic treatment with URB597 ameliorates post-stress symptoms in a rat model of PTSD.
    European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, 2018, Volume: 28, Issue:5

    Activating the endocannabinoid system has become a major focus in the search for novel therapeutics for anxiety and deficits in fear extinction, two defining features of PTSD. We examined whether chronic treatment with the fatty acid amide hydrolase (FAAH) inhibitor URB597 (0.2, 0.3, 0.4 mg/kg, i.p.) or the CB1/2 receptor agonist WIN55,212-2 (0.25, 0.5 mg/kg, i.p.) injected for 3 weeks to rats exposed to the shock and reminders model of PTSD would attenuate post-stress symptoms and affect basolateral amygdala (BLA) and CA1 CB1 receptors. Exposure to shock and reminders enhanced acoustic startle response and impaired extinction. Rats exposed to shock and reminders and chronically treated with URB597 demonstrated normalized startle response and intact extinction kinetics. WIN55,212-2 only affected the startle response. The therapeutic effects of URB597 and WIN55,212-2 were found to be CB1 receptor dependent, as these effects were blocked when a low dose of the CB1 receptor antagonist AM251 (0.3 mg/kg, i.p. for 3 weeks) was co-administered. Moreover, URB597, but not WIN55,212-2, normalized the shock/reminders-induced upregulation in CB1 receptor levels in the BLA and CA1. One hour after the shock, N-arachidonoylethanolamine (AEA) was increased in the BLA and decreased in the CA1. Circulating 2-arachidonoylglycerol (2-AG) concentrations were decreased in shocked rats, with no significant effect in the BLA or CA1. FAAH activity was increased in the CA1 of shocked rats. Chronic cannabinoid treatment with URB597 can ameliorate PTSD-like symptoms suggesting FAAH inhibitors as a potentially effective therapeutic strategy for the treatment of disorders associated with inefficient fear coping.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Basolateral Nuclear Complex; Benzamides; Benzoxazines; CA1 Region, Hippocampal; Cannabinoid Receptor Antagonists; Carbamates; Dose-Response Relationship, Drug; Electric Stimulation; Endocannabinoids; Extinction, Psychological; Glycerides; Male; Morpholines; Naphthalenes; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Reflex, Startle; Stress Disorders, Post-Traumatic

2018
Fatty acid ethanolamide levels are altered in borderline personality and complex posttraumatic stress disorders.
    European archives of psychiatry and clinical neuroscience, 2014, Volume: 264, Issue:5

    Borderline personality (BPD) and complex posttraumatic stress disorders (PTSD) are both powerfully associated with the experience of interpersonal violence during childhood and adolescence. The disorders frequently co-occur and often result in pervasive problems in, e.g., emotion regulation and altered pain perception, where the endocannabinoid system is deeply involved. We hypothesize an endocannabinoid role in both disorders. We investigated serum levels of the endocannabinoids anandamide and 2-arachidonoylglycerol and related fatty acid ethanolamides (FAEs) in BPD, PTSD, and controls. Significant alterations were found for both endocannabinoids in BPD and for the FAE oleoylethanolamide in PTSD suggesting a respective link to both disorders.

    Topics: Adult; Amides; Arachidonic Acids; Borderline Personality Disorder; Endocannabinoids; Ethanolamines; Fatty Acids; Female; Glycerides; Humans; Male; Middle Aged; Palmitic Acids; Polyunsaturated Alkamides; Prospective Studies; Psychiatric Status Rating Scales; Severity of Illness Index; Stress Disorders, Post-Traumatic; Young Adult

2014
Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study.
    Molecular psychiatry, 2013, Volume: 18, Issue:9

    Endocannabinoids and their attending cannabinoid type 1 (CB1) receptor have been implicated in animal models of post-traumatic stress disorder (PTSD). However, their specific role has not been studied in people with PTSD. Herein, we present an in vivo imaging study using positron emission tomography (PET) and the CB1-selective radioligand [(11)C]OMAR in individuals with PTSD, and healthy controls with lifetime histories of trauma (trauma-exposed controls (TC)) and those without such histories (healthy controls (HC)). Untreated individuals with PTSD (N=25) with non-combat trauma histories, and TC (N=12) and HC (N=23) participated in a magnetic resonance imaging scan and a resting PET scan with the CB1 receptor antagonist radiotracer [(11)C]OMAR, which measures the volume of distribution (VT) linearly related to CB1 receptor availability. Peripheral levels of anandamide, 2-arachidonoylglycerol, oleoylethanolamide, palmitoylethanolamide and cortisol were also assessed. In the PTSD group, relative to the HC and TC groups, we found elevated brain-wide [(11)C]OMAR VT values (F(2,53)=7.96, P=0.001; 19.5% and 14.5% higher, respectively), which were most pronounced in women (F(1,53)=5.52, P=0.023). Anandamide concentrations were reduced in the PTSD relative to the TC (53.1% lower) and HC (58.2% lower) groups. Cortisol levels were lower in the PTSD and TC groups relative to the HC group. Three biomarkers examined collectively--OMAR VT, anandamide and cortisol--correctly classified nearly 85% of PTSD cases. These results suggest that abnormal CB1 receptor-mediated anandamide signaling is implicated in the etiology of PTSD, and provide a promising neurobiological model to develop novel, evidence-based pharmacotherapies for this disorder.

    Topics: Adult; Amides; Analysis of Variance; Arachidonic Acids; Brain; Endocannabinoids; Ethanolamines; Female; Glycerides; Humans; Hydrocortisone; Imidazoles; Logistic Models; Male; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Radionuclide Imaging; Receptor, Cannabinoid, CB1; Stress Disorders, Post-Traumatic; Young Adult

2013
Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the World Trade Center attacks.
    Psychoneuroendocrinology, 2013, Volume: 38, Issue:12

    Endocannabinoid (eCB) signaling has been identified as a modulator of adaptation to stress, and is integral to basal and stress-induced glucocorticoid regulation. Furthermore, interactions between eCBs and glucocorticoids have been shown to be necessary for the regulation of emotional memories, suggesting that eCB function may relate to the development of post-traumatic stress disorder (PTSD). To examine this, plasma eCBs were measured in a sample (n=46) drawn from a population-based cohort selected for physical proximity to the World Trade Center (WTC) at the time of the 9/11 attacks. Participants received a structured diagnostic interview and were grouped according to whether they met diagnostic criteria for PTSD (no PTSD, n=22; lifetime diagnosis of PTSD=24). eCB content (2-arachidonoylglycerol (2-AG) and anandamide (AEA)) and cortisol were measured from 8 a.m. plasma samples. Circulating 2-AG content was significantly reduced among individuals meeting diagnostic criteria for PTSD. The effect of reduced 2-AG content in PTSD remained significant after controlling for the stress of exposure to the WTC collapse, gender, depression and alcohol abuse. There were no significant group differences for AEA or cortisol levels; however, across the whole sample AEA levels positively correlated with circulating cortisol, and AEA levels exhibited a negative relationship with the degree of intrusive symptoms within the PTSD sample. This report shows that PTSD is associated with a reduction in circulating levels of the eCB 2-AG. Given the role of 2-AG in the regulation of the stress response, these data support the hypothesis that deficient eCB signaling may be a component of the glucocorticoid dysregulation associated with PTSD. The negative association between AEA levels and intrusive symptoms is consistent with animal data indicating that reductions in AEA promote retention of aversive emotional memories. Future work will aim to replicate these findings and extend their relevance to clinical pathophysiology, as well as to neuroendocrine and molecular markers of PTSD.

    Topics: Aged; Alcoholism; Amides; Arachidonic Acids; Endocannabinoids; Ethanolamines; Ethnicity; Female; Glycerides; Humans; Hydrocortisone; Male; Middle Aged; Neuropsychological Tests; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Psychiatric Status Rating Scales; Sex Characteristics; Stress Disorders, Post-Traumatic; Terrorism

2013
Inhibition of fatty-acid amide hydrolase accelerates acquisition and extinction rates in a spatial memory task.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2007, Volume: 32, Issue:5

    Recent reports have demonstrated that disruption of CB(1) receptor signaling impairs extinction of learned responses in conditioned fear and Morris water maze paradigms. Here, we test the hypothesis that elevating brain levels of the endogenous cannabinoid anandamide through either genetic deletion or pharmacological inhibition of its primary catabolic enzyme fatty-acid amide hydrolase (FAAH) will potentiate extinction in a fixed platform water maze task. FAAH (-/-) mice and mice treated with the FAAH inhibitor OL-135, did not display any memory impairment or motor disruption, but did exhibit a significant increase in the rate of extinction. Unexpectedly, FAAH-compromised mice also exhibited a significant increase in acquisition rate. The CB(1) receptor antagonist SR141716 (rimonabant) when given alone had no effects on acquisition, but disrupted extinction. Additionally, SR141716 blocked the effects of OL-135 on both acquisition and extinction. Collectively, these results indicate that endogenous anandamide plays a facilitatory role in extinction through a CB(1) receptor mechanism of action. In contrast, the primary psychoactive constituent of marijuana, Delta(9)-tetrahydrocannabinol, failed to affect extinction rates, suggesting that FAAH is a more effective target than a direct acting CB(1) receptor agonist in facilitating extinction. More generally, these findings suggest that FAAH inhibition represents a promising pharmacological approach to treat psychopathologies hallmarked by an inability to extinguish maladaptive behaviors, such as post-traumatic stress syndrome and obsessive-compulsive disorder.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Brain; Brain Chemistry; Cannabinoid Receptor Modulators; Dronabinol; Endocannabinoids; Enzyme Inhibitors; Extinction, Psychological; Female; Lipid Metabolism; Male; Maze Learning; Memory; Mice; Mice, Inbred C57BL; Mice, Knockout; Obsessive-Compulsive Disorder; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Pyridines; Receptor, Cannabinoid, CB1; Rimonabant; Stress Disorders, Post-Traumatic

2007