anandamide has been researched along with Spinal-Cord-Injuries* in 4 studies
1 review(s) available for anandamide and Spinal-Cord-Injuries
Article | Year |
---|---|
Modulation of neuropathic-pain-related behaviour by the spinal endocannabinoid/endovanilloid system.
Neuropathic pain refers to chronic pain that results from injury to the nervous system. The mechanisms involved in neuropathic pain are complex and involve both peripheral and central phenomena. Although numerous pharmacological agents are available for the treatment of neuropathic pain, definitive drug therapy has remained elusive. Recent drug discovery efforts have identified an original neurobiological approach to the pathophysiology of neuropathic pain. The development of innovative pharmacological strategies has led to the identification of new promising pharmacological targets, including glutamate antagonists, microglia inhibitors and, interestingly, endogenous ligands of cannabinoids and the transient receptor potential vanilloid type 1 (TRPV1). Endocannabinoids (ECs), endovanilloids and the enzymes that regulate their metabolism represent promising pharmacological targets for the development of a successful pain treatment. This review is an update of the relationship between cannabinoid receptors (CB1) and TRPV1 channels and their possible implications for neuropathic pain. The data are focused on endogenous spinal mechanisms of pain control by anandamide, and the current and emerging pharmacotherapeutic approaches that benefit from the pharmacological modulation of spinal EC and/or endovanilloid systems under chronic pain conditions will be discussed. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acid; Arachidonic Acids; Behavior; Benzamides; Carbamates; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Glycerides; Humans; Microglia; Neuralgia; Palmitic Acids; Peripheral Nerve Injuries; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Spinal Cord Injuries; TRPV Cation Channels | 2012 |
3 other study(ies) available for anandamide and Spinal-Cord-Injuries
Article | Year |
---|---|
A study of cannabinoid-1 receptors during the early phase of excitotoxic damage to rat spinal locomotor networks in vitro.
Endocannabinoids acting on cannabinoid-1 receptors (CB1Rs) are proposed to protect brain and spinal neurons from excitotoxic damage. The ability to recover from spinal cord injury (SCI), in which excitotoxicity is a major player, is usually investigated at late times after modulation of CB1Rs whose role in the early phases of SCI remains unclear. Using the rat spinal cord in vitro as a model for studying SCI initial pathophysiology, we investigated if agonists or antagonists of CB1Rs might affect SCI induced by the excitotoxic agent kainate (KA) within 24h from a transient (1h) application of this glutamate agonist. The CB1 agonist anandamide (AEA or pharmacological block of its degradation) did not limit excitotoxic depolarization of spinal networks: cyclic adenosine monophosphate (cAMP) assay demonstrated that CB1Rs remained functional 24h later and similarly expressed among dead or survived cells. Locomotor-like network activity recorded from ventral roots could not recover with such treatments and was associated with persistent depression of synaptic transmission. Motoneurons, that are particularly vulnerable to KA, were not protected by AEA. Application of 2-arachidonoylglycerol also did not attenuate the electrophysiological and histological damage. The intensification of damage by the CB1 antagonist AM251 suggested that endocannabinoids were operative after excitotoxic stimulation, yet insufficient to contrast it efficiently. The present data indicate that the early phases of excitotoxic SCI could not be arrested by pharmacologically exploiting the endocannabinoid system, consistent with the notion that AEA and its derivatives are more useful to treat late SCI phases. Topics: Animals; Arachidonic Acids; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Disease Models, Animal; Endocannabinoids; Glycerides; Kainic Acid; Locomotion; Motor Neurons; Neural Pathways; Neuroprotection; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats, Wistar; Receptor, Cannabinoid, CB1; Spinal Cord; Spinal Cord Injuries; Tissue Culture Techniques | 2016 |
Fatty acid amide hydrolase (FAAH) inhibitors exert pharmacological effects, but lack antinociceptive efficacy in rats with neuropathic spinal cord injury pain.
Amelioration of neuropathic spinal cord injury (SCI) pain is a clinical challenge. Increasing the endocannabinoid anandamide and other fatty acid amides (FAA) by blocking fatty acid amide hydrolase (FAAH) has been shown to be antinociceptive in a number of animal models of chronic pain. However, an antinociceptive effect of blocking FAAH has yet to be demonstrated in a rat model of neuropathic SCI pain. Four weeks following a SCI, rats developed significantly decreased hind paw withdrawal thresholds, indicative of below-level cutaneous hypersensitivity. A group of SCI rats were systemically treated (i.p.) with either the selective FAAH inhibitor URB597 or vehicle twice daily for seven days. A separate group of SCI rats received a single dose (p.o.) of either the selective FAAH inhibitor PF-3845 or vehicle. Following behavioral testing, levels of the FAA N-arachidonoylethanolamide, N-oleoyl ethanolamide and N-palmitoyl ethanolamide were quantified in brain and spinal cord from SCI rats. Four weeks following SCI, FAA levels were markedly reduced in spinal cord tissue. Although systemic treatment with URB597 significantly increased CNS FAA levels, no antinociceptive effect was observed. A significant elevation of CNS FAA levels was also observed following oral PF-3845 treatment, but only a modest antinociceptive effect was observed. Increasing CNS FAA levels alone does not lead to robust amelioration of below-level neuropathic SCI pain. Perhaps utilizing FAAH inhibition in conjunction with other analgesic mechanisms could be an effective analgesic therapy. Topics: Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Benzamides; Benzoxazines; Brain; Carbamates; Endocannabinoids; Enzyme Inhibitors; Hindlimb; Male; Morpholines; Naphthalenes; Neuralgia; Pain Measurement; Pain Threshold; Piperidines; Polyunsaturated Alkamides; Pyridines; Rats, Sprague-Dawley; Spinal Cord; Spinal Cord Injuries; Treatment Outcome | 2014 |
The endocannabinoid system is modulated in response to spinal cord injury in rats.
Endocannabinoids are lipid mediators with protective effects in many diseases of the nervous system. We have studied the modulation of the endocannabinoid system after a spinal cord contusion in rats. In early stages, lesion induced increases of anandamide and palmitoylethanolamide (PEA) levels, an upregulation of the synthesizing enzyme NAPE-phospholipase D and a downregulation of the degradative enzyme FAAH. In delayed stages, lesion induced increases in 2-arachidonoylglycerol and a strong upregulation of the synthesizing enzyme DAGL-alpha, that is expressed by neurons, astrocytes and immune infiltrates. The degradative enzyme MAGL was also moderately increased but only 7 days after the lesion. We have studied the cellular targets for the newly formed endocannabinoids using RT-PCR and immunohistochemistry against CB(1) and CB(2) receptors. We observed that CB(1) was constitutively expressed by neurons and oligodendrocytes and induced in reactive astrocytes. CB(2) receptor was strongly upregulated after lesion, and mostly expressed by immune infiltrates and astrocytes. The endocannabinoid system may represent an interesting target for new therapeutical approaches to spinal cord injury. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Astrocytes; Cannabinoid Receptor Modulators; Endocannabinoids; Ethanolamines; Glycerides; Immunohistochemistry; Lipoprotein Lipase; Macrophages; Male; Neurons; Palmitic Acids; Phospholipase D; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Spinal Cord; Spinal Cord Injuries | 2009 |