anandamide and Pheochromocytoma

anandamide has been researched along with Pheochromocytoma* in 2 studies

Other Studies

2 other study(ies) available for anandamide and Pheochromocytoma

ArticleYear
ASK1-p38 MAPK/JNK signaling cascade mediates anandamide-induced PC12 cell death.
    Journal of neurochemistry, 2003, Volume: 85, Issue:1

    Anandamide is a neuroimmunoregulatory molecule that triggers apoptosis in a number of cell types including PC12 cells. Here, we investigated the molecular mechanisms underlying anandamide-induced cell death in PC12 cells. Anandamide treatment resulted in the activation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and p44/42 MAPK in apoptosing cells. A selective p38 MAPK inhibitor, SB203580, or dn-JNK, JNK1(A-F) or SAPKbeta(K-R), blocked anandamide-induced cell death, whereas a specific inhibitor of MEK-1/2, U0126, had no effect, indicating that activation of p38 MAPK and JNK is critical in anandamide-induced cell death. An important role for apoptosis signal-regulating kinase 1 (ASK1) in this event was also demonstrated by the inhibition of p38 MAPK/JNK activation and death in cells overexpressing dn-ASK1, ASK1 (K709M). Conversely, the constitutively active ASK1, ASK1DeltaN, caused prolonged p38 MAPK/JNK activation and increased cell death. These indicate that ASK1 mediates anandamide-induced cell death via p38 MAPK and JNK activation. Here, we also found that activation of p38 MAPK/JNK is accompanied by cytochrome c release from the mitochondria and caspase activation (which can be inhibited by SB203580), suggesting that anandamide triggers a mitochondrial dependent apoptotic pathway. The caspase inhibitor, zVAD, and the mitochondrial pore opening inhibitor, cyclosporine A, blocked anandamide-induced cell death but not p38 MAPK/JNK activation, suggesting that activation of these kinases may occur upstream of mitochondrial associated events.

    Topics: Animals; Apoptosis; Arachidonic Acids; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Activation; Enzyme Inhibitors; JNK Mitogen-Activated Protein Kinases; MAP Kinase Kinase Kinase 5; MAP Kinase Kinase Kinases; Mitochondria; Mitogen-Activated Protein Kinases; p38 Mitogen-Activated Protein Kinases; PC12 Cells; Pheochromocytoma; Polyunsaturated Alkamides; Proto-Oncogene Proteins c-bcl-2; Rats; Receptors, Cannabinoid; Receptors, Drug; Signal Transduction; Transfection

2003
Biosynthesis and degradation of bioactive fatty acid amides in human breast cancer and rat pheochromocytoma cells--implications for cell proliferation and differentiation.
    European journal of biochemistry, 1998, Jun-15, Volume: 254, Issue:3

    The endogenous cannabinoid, anandamide (arachidonoylethanolamide), and the sleep-inducing factor, oleamide (cis-9-octadecenoamide), represent two classes of long-chain fatty acid amides with several neuronal actions and metabolic pathways in common. Here we report that these two compounds are present in human breast carcinoma EFM-19 cells and rat adrenal pheochromocytoma PC-12 cells, together with the enzyme responsible for their degradation, fatty acid amide hydrolase, and the proposed biosynthetic precursors for arachidonoylethanolamide and related acylethanolamides, the N-acyl-phosphatidylethanolamines. Lipids extracted from cells labelled with [14C]ethanolamine contained radioactive compounds with the same chromatographic behaviour as arachidonoylethanolamide and acyl-PtdEtns. The levels of these compounds were not influenced by either stimulation with ionomycin in EFM-19 cells or two-week treatment with the nerve growth factor in PC-12 cells. The chemical nature of arachidonoylethanolamide, related acylethanolamides and the corresponding acyl-PtdEtns was confirmed by gas chromatographic/mass spectrometric analyses of the purified compounds, which also showed the presence of higher levels of oleamide. The latter compound, which does not activate the central CB1 cannabinoid receptor, exhibited an anti-proliferative action on EFM-19 cells at higher concentrations than arachidonoylethanolamide (IC50 = 11.3 microM for oleamide and 2.1 microM for arachidonoylethanolamide), while at a low, inactive dose it potentiated an arachidonoylethanolamide cytostatic effect. The CB1 receptor selective antagonist SR 141716A (0.5 microM) reversed the effect of both arachidonoylethanolamide and oleamide. EFM-19 cells and PC-12 cells were found to contain a membrane-bound [14C]arachidonoylethanolamide-hydrolysing activity with pH dependency and sensitivity to inhibitors similar to those previously reported for fatty acid amide hydrolase. This enzyme was inhibited by oleamide in both intact cells and cell-free preparations. The presence of transcripts of fatty acid amide hydrolase in these cells was shown by northern blot analyses of their total RNA. The rate of [14C]arachidonoylethanolamide hydrolysis by intact cells, the kinetic parameters of arachidonoylethanolamide enzymatic hydrolysis and the amounts of the fatty acid amide hydrolase transcript, were not significantly influenced by a two-week treatment with nerve growth factor and subsequent transformation of PC-12 ce

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Breast Neoplasms; Cell Differentiation; Cell Division; Endocannabinoids; Humans; Oleic Acids; PC12 Cells; Pheochromocytoma; Phosphatidylethanolamines; Polyunsaturated Alkamides; Rats; RNA, Messenger; Tumor Cells, Cultured

1998