anandamide and Periodontitis

anandamide has been researched along with Periodontitis* in 3 studies

Other Studies

3 other study(ies) available for anandamide and Periodontitis

ArticleYear
Endocannabinoids and inflammatory response in periodontal ligament cells.
    PloS one, 2014, Volume: 9, Issue:9

    Endocannabinoids are associated with multiple regulatory functions in several tissues. The main endocannabinoids, anandamide (AEA) and 2-arachidonylglycerol (2-AG), have been detected in the gingival crevicular fluid of periodontitis patients, but the association between periodontal disease or human periodontal ligament cells (hPdLCs) and endocannabinoids still remain unclear. The aim of the present study was to examine the effects of AEA and 2-AG on the proliferation/viability and cytokine/chemokine production of hPdLCs in the presence/absence of Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS). The proliferation/viability of hPdLCs was measured using 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT)-assay. Interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein-1 (MCP-1) levels were examined at gene expression and protein level by real-time PCR and ELISA, respectively. AEA and 2-AG did not reveal any significant effects on proliferation/viability of hPdLCs in the absence of P. gingivalis LPS. However, hPdLCs viability was significantly increased by 10-20 µM AEA in the presence of P. gingivalis LPS (1 µg/ml). In the absence of P. gingivalis LPS, AEA and 2-AG did not exhibit any significant effect on the expression of IL-8 and MCP-1 expression in hPdLCs, whereas IL-6 expression was slightly enhanced by 10 µM 2-AG and not affected by AEA. In P.gingivalis LPS stimulated hPdLCs, 10 µM AEA down-regulated gene-expression and protein production of IL-6, IL-8, and MCP-1. In contrast, 10 µM 2-AG had an opposite effect and induced a significant up-regulation of gene and protein expression of IL-6 and IL-8 (P<0.05) as well as gene-expression of MCP-1 in P. gingivalis LPS stimulated hPdLCs. Our data suggest that AEA appears to have an anti-inflammatory and immune suppressive effect on hPdLCs' host response to P.gingivalis LPS, whereas 2-AG appears to promote detrimental inflammatory processes. In conclusion, AEA and 2-AG might play an important role in the modulation of periodontal inflammation.

    Topics: Arachidonic Acids; Cell Proliferation; Cell Survival; Cells, Cultured; Cytokines; Endocannabinoids; Gene Expression Regulation; Glycerides; Humans; Inflammation; Inflammation Mediators; Lipopolysaccharides; Periodontal Ligament; Periodontitis; Polyunsaturated Alkamides

2014
Anti-inflammatory effect of the endocannabinoid anandamide in experimental periodontitis and stress in the rat.
    Neuroimmunomodulation, 2012, Volume: 19, Issue:5

    Periodontitis is an infectious disease leading to inflammation and destruction of tissue surrounding and supporting the tooth. The progress of the inflammatory response depends on the host's immune system and risk factors such as stress. The aim of the present study was to investigate the role of the endocannabinoid anandamide (AEA) in experimental periodontitis with restraint stress, since the endocannabinoid system is known to modulate the hypothalamo-pituitary-adrenal axis as well as immune functions and has been found in human gingival tissues.. Experimental periodontitis was induced by ligature around first inferior molars and immobilization stress for 2 h twice daily for 7 days in a rat model.. Corticosterone plasma levels, locomotor activity, adrenal gland weight and bone loss were increased in periodontitis and stress groups, and there was also less weight gain. The inflammatory parameters such as prostaglandin E(2) (radioimmunoassay), nitric oxide (radioconversion of (14)C-arginine), tumor necrosis factor (TNF)-α (ELISA) and interleukin (IL)-1β (Western blot) measured in the gingival tissue were significantly increased in the periodontitis groups compared to the control group. Local injection of AEA (10(-8)M, 30 µl) decreased corticosterone plasma levels and the content of the cytokines TNF-α and IL-1β in gingival tissue in periodontitis-stress groups. These AEA-induced inhibitions were mediated by CB(1) and CB(2) cannabinoid receptors since the injection of both antagonists together, AM251 (10(-6)M) and AM630 (10(-6)M) in 30 µl, prevented these effects.. The endocannabinoid AEA diminishes the inflammatory response in periodontitis even during a stressful situation.

    Topics: Alveolar Bone Loss; Animals; Anti-Inflammatory Agents; Arachidonic Acids; Body Weight; Cannabinoid Receptor Agonists; Corticosterone; Disease Models, Animal; Endocannabinoids; Enzyme-Linked Immunosorbent Assay; Exploratory Behavior; Indoles; Interleukin-1beta; Male; Nitric Oxide Synthase; Periodontitis; Piperidines; Polyunsaturated Alkamides; Prostaglandins E; Pyrazoles; Rats; Rats, Wistar; Statistics, Nonparametric; Stress, Psychological; Tumor Necrosis Factor-alpha

2012
Endocannabinoid, anandamide in gingival tissue regulates the periodontal inflammation through NF-kappaB pathway inhibition.
    FEBS letters, 2006, Jan-23, Volume: 580, Issue:2

    Anandamide (AEA) exhibits anti-inflammatory effects. However, its role in the periodontal field remains unknown. Here, we found that gingival crevicular fluid contained a detectable level of AEA. The cannabinoid receptors CB1 and CB2 were expressed by human gingival fibroblasts (HGFs), and markedly upregulated under pathological conditions. AEA significantly reduced the production of pro-inflammatory mediators (IL-6, IL-8 and MCP-1) induced by Porphyromonas gingivalis LPS in HGFs, and this effect was attenuated by AM251 and SR144528, selective antagonists of CB1 and CB2, respectively. Moreover, AEA completely blocked LPS-triggered NF-kappaB activation, implying that AEA may regulate hyperinflammatory reactions in periodontitis.

    Topics: Arachidonic Acids; Cannabinoid Receptor Modulators; Cells, Cultured; Endocannabinoids; Fibroblasts; Gingiva; Gingival Crevicular Fluid; Gingivitis; Humans; Lipopolysaccharides; NF-kappa B; Periodontitis; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Signal Transduction

2006