anandamide has been researched along with Parkinsonian-Disorders* in 7 studies
7 other study(ies) available for anandamide and Parkinsonian-Disorders
Article | Year |
---|---|
Identification of metabolite biomarkers for L-DOPA-induced dyskinesia in a rat model of Parkinson's disease by metabolomic technology.
L-DOPA-induced dyskinesia (LID) is a frequent complication of chronic L-DOPA therapy in the clinical treatment of Parkinson's disease (PD). The pathogenesis of LID involves complex molecular mechanisms in the striatum. Metabolomics can shed light on striatal metabolic alterations in LID. In the present study, we compared metabolomics profiles of striatum tissue from Parkinsonian rats with or without dyskinetic symptoms after chronic L-DOPA administration. A liquid chromatography-mass spectrometry based global metabolomics method combined with multivariate statistical analyses were used to detect candidate metabolites associated with LID. 36 dysregulated metabolites in the striatum of LID rats, including anandamide, 2-arachidonoylglycerol, adenosine, glutamate and sphingosine1-phosphate were identified. Furthermore, IMPaLA metabolite set analysis software was used to identify differentially regulated metabolic pathways. The results showed that the metabolic pathways of "Retrograde endocannabinoid signaling", "Phospholipase D signaling pathway", "Glycerophospholipid metabolism" and "Sphingolipid signaling", etc. were dysregulated in LID rats compared to non-LID controls. Moreover, integrated pathway analysis based on results from the present metabolomics and our previous gene expression data in LID rats further demonstrates that aberrant "Retrograde endocannabinoid signaling" pathway might be involved in the development of LID. The present results provide a new profile for the understanding of the pathological mechanism of LID. Topics: Animals; Antiparkinson Agents; Apomorphine; Arachidonic Acids; Biomarkers; Cannabinoid Receptor Agonists; Corpus Striatum; Disease Models, Animal; Dopamine Agonists; Dyskinesia, Drug-Induced; Endocannabinoids; Glycerides; Levodopa; Male; Metabolome; Metabolomics; Motor Activity; Oxidopamine; Parkinsonian Disorders; Polyunsaturated Alkamides; Rats, Sprague-Dawley | 2018 |
Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson's disease.
Elements of the endocannabinoid system are strongly expressed in the basal ganglia where they suffer profound rearrangements after dopamine depletion. Modulation of the levels of the endocannabinoid 2-arachidonoyl-glycerol by inhibiting monoacylglycerol lipase alters glial phenotypes and provides neuroprotection in a mouse model of Parkinson's disease. In this study, we assessed whether inhibiting fatty acid amide hydrolase could also provide beneficial effects on the time course of this disease. The fatty acid amide hydrolase inhibitor, URB597, was administered chronically to mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTPp) over 5weeks. URB597 (1mg/kg) prevented MPTPp induced motor impairment but it did not preserve the dopamine levels in the nigrostriatal pathway or regulate glial cell activation. The symptomatic relief of URB597 was confirmed in haloperidol-induced catalepsy assays, where its anti-cataleptic effects were both blocked by antagonists of the two cannabinoid receptors (CB1 and CB2), and abolished in animals deficient in these receptors. Other fatty acid amide hydrolase inhibitors, JNJ1661010 and TCF2, also had anti-cataleptic properties. Together, these results demonstrate an effect of fatty acid amide hydrolase inhibition on the motor symptoms of Parkinson's disease in two distinct experimental models that is mediated by cannabinoid receptors. Topics: Amidohydrolases; Animals; Arachidonic Acids; Benzamides; Cannabinoid Receptor Agonists; Carbamates; Disease Models, Animal; Endocannabinoids; Male; Mice; Mice, Inbred C57BL; Parkinsonian Disorders; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2 | 2016 |
Co-administration of cannabidiol and capsazepine reduces L-DOPA-induced dyskinesia in mice: Possible mechanism of action.
Topics: Animals; Anti-Dyskinesia Agents; Arachidonic Acids; Brain; Cannabidiol; Capsaicin; Cyclooxygenase 2; Dyskinesia, Drug-Induced; Endocannabinoids; Extracellular Signal-Regulated MAP Kinases; Histones; Levodopa; Male; Mice, Inbred C57BL; NF-kappa B; Oxidopamine; Parkinsonian Disorders; Polyunsaturated Alkamides; PPAR gamma; Receptor, Cannabinoid, CB1; TRPV Cation Channels; Tyrosine 3-Monooxygenase | 2016 |
Experimental parkinsonism alters anandamide precursor synthesis, and functional deficits are improved by AM404: a modulator of endocannabinoid function.
Modulation of the endocannabinoid system might be useful in treating Parkinson's disease. Here, we show that systemic administration of N-(4-hydroxyphenyl)-arachidonamide (AM404), a cannabinoid modulator that enhances anandamide (AEA) availability in the biophase, exerts antiparkinsonian effects in 6-hydroxydopamine-lesioned rats. Local injections of AM404 into denervated striata reduced parkinsonian motor asymmetries, these effects being associated with the reduction of D2 dopamine receptor function together with a positive modulation of 5-HT(1B) serotonin receptor function. Stimulation of striatal 5-HT(1B) receptors alone was observed to ameliorate parkinsonian deficits, supporting the fact that AM404 exerts antiparkinsonian effects likely through stimulation of striatal 5-HT(1B) serotonin receptor function. Hence, modulation of cannabinoid function leading to enhancement of AEA in the biophase might be of therapeutic value in the control of symptoms of Parkinson's disease. On the other hand, reduced levels of N-acyl-transferase (AEA precursor synthesizing enzyme), without changes in fatty acid amidohydrolase (AEA degradative enzyme), were detected in denervated striata in comparison with intact striata. This finding reveals the presence of a homeostatic striatal mechanism emerging after dopaminergic denervation likely tending to enhance low dopamine tone. Topics: Acyltransferases; Amidohydrolases; Amphetamine; Analysis of Variance; Animals; Antiparkinson Agents; Arachidonic Acids; Behavior, Animal; Brain Chemistry; Cell Count; Central Nervous System Stimulants; Dopamine Agonists; Dopamine Antagonists; Dose-Response Relationship, Drug; Drug Administration Schedule; Drug Interactions; Endocannabinoids; Functional Laterality; Male; Motor Activity; Oxidopamine; Parkinsonian Disorders; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Rotation; Serotonin Antagonists; Serotonin Receptor Agonists; Substantia Nigra; Tyrosine 3-Monooxygenase | 2004 |
Levodopa treatment reverses endocannabinoid system abnormalities in experimental parkinsonism.
Cannabinoid receptors and their endogenous ligands are potent inhibitors of neurotransmitter release in the brain. Here, we show that in a rat model of Parkinson's disease induced by unilateral nigral lesion with 6-hydroxydopamine (6-OHDA), the striatal levels of the endocannabinoid anandamide (AEA) were increased, while the activity of its membrane transporter and hydrolase (fatty-acid amide hydrolase, FAAH) were decreased. These changes were not observed in the cerebellum of the same animals. Moreover, the frequency and amplitude of glutamate-mediated spontaneous excitatory post-synaptic currents were augmented in striatal spiny neurones recorded from parkinsonian rats. Remarkably, the anomalies in the endocannabinoid system, as well as those in glutamatergic activity, were completely reversed by chronic treatment of parkinsonian rats with levodopa, and the pharmacological inhibition of FAAH restored a normal glutamatergic activity in 6-OHDA-lesioned animals. Thus, the increased striatal levels of AEA may reflect a compensatory mechanism trying to counteract the abnormal corticostriatal glutamatergic drive in parkinsonian rats. However, this mechanism seems to be unsuccessful, since spontaneous excitatory activity is still higher in these animals. Taken together, these data show that anomalies in the endocannabinoid system induced by experimental parkinsonism are restricted to the striatum and can be reversed by chronic levodopa treatment, and suggest that inhibition of FAAH might represent a possible target to decrease the abnormal cortical glutamatergic drive in Parkinson's disease. Topics: Amidohydrolases; Animals; Antiparkinson Agents; Arachidonic Acids; Binding, Competitive; Cannabinoid Receptor Modulators; Cerebellum; Corpus Striatum; Cyclohexanols; Disease Models, Animal; Endocannabinoids; Excitatory Postsynaptic Potentials; Fatty Acids, Unsaturated; Glutamic Acid; Glycerides; In Vitro Techniques; Levodopa; Oxidopamine; Parkinsonian Disorders; Patch-Clamp Techniques; Phospholipase D; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptors, Cannabinoid; Receptors, Drug | 2003 |
Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission.
Cannabinoid receptors and their endogenous ligands have been recently identified in the brain as potent inhibitors of neurotransmitter release. Here we show that, in a rat model of Parkinson's disease induced by unilateral nigral lesion with 6-hydroxydopamine (6-OHDA), the striatal levels of anandamide, but not that of the other endocannabinoid 2-arachidonoylglycerol, were increased. Moreover, we observed a decreased activity of the anandamide membrane transporter (AMT) and of the anandamide hydrolase [fatty acid amide hydrolase (FAAH)], whereas the binding of anandamide to cannabinoid receptors was unaffected. Spontaneous glutamatergic activity recorded from striatal spiny neurons was higher in 6-OHDA-lesioned rats. Inhibition of AMT by N-(4-hydroxyphenyl)-arachidonoylamide (AM-404) or by VDM11, or stimulation of the cannabinoid CB1 receptor by HU-210 reduced glutamatergic spontaneous activity in both naive and 6-OHDA-lesioned animals to a similar extent. Conversely, the FAAH inhibitors phenylmethylsulfonyl fluoride and methyl-arachidonoyl fluorophosphonate were much more effective in 6-OHDA-lesioned animals. The present study shows that inhibition of anandamide hydrolysis might represent a possible target to decrease the abnormal cortical glutamatergic drive in Parkinson's disease. Topics: Amidohydrolases; Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Cannabinoids; Carrier Proteins; Corpus Striatum; Disease Models, Animal; Dronabinol; Endocannabinoids; Enzyme Inhibitors; Glutamic Acid; Glycerides; Hydrolysis; In Vitro Techniques; Membrane Potentials; Neurons; Oxidopamine; Parkinsonian Disorders; Patch-Clamp Techniques; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptors, Cannabinoid; Receptors, Drug; Synaptic Transmission | 2002 |
Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease.
In recent years, cannabinoid receptors and their endogenous ligands (endocannabinoids) have been identified within the brain. The high density of CB1 cannabinoid receptors within the basal ganglia suggests a potential role for endocannabinoids in the control of voluntary movement and in basal ganglia-related movement disorders such as Parkinson's disease. However, whether endocannabinoids play a role in regulating motor behavior in health and disease is unknown. Here we report the presence in two regions of the basal ganglia, the globus pallidus and substantia nigra, of the endocannabinoids 2-arachidonoylglycerol (2AG) and anandamide. The levels of the latter compound are approximately threefold higher than those previously reported in any other brain region. In the reserpine-treated rat, an animal model of Parkinson's disease, suppression of locomotion is accompanied by a sevenfold increase in the levels of the 2AG in the globus pallidus, but not in the other five brain regions analyzed. Stimulation of locomotion in the reserpine-treated rat by either of the two selective agonists of D2 and D1 dopamine receptors, quinpirole and R-(+/-)-3-allyl-6-chloro-7, 8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (Cl-APB), respectively, results in the reduction of both anandamide and 2AG levels in the globus pallidus. Finally, full restoration of locomotion in the reserpine-treated rat is obtained by coadministration of quinpirole and the selective antagonist of the cannabinoid CB1 receptor subtype, SR141716A. These findings indicate a link between endocannabinoid signaling in the globus pallidus and symptoms of Parkinson's disease in the reserpine-treated rat, and suggest that modulation of the endocannabinoid signaling system might prove useful in treating this or other basal ganglia-related movement disorders. Topics: Animals; Arachidonic Acids; Benzazepines; Cannabinoid Receptor Modulators; Cannabinoids; Dopamine Agonists; Endocannabinoids; Globus Pallidus; Glycerides; Humans; Male; Motor Activity; Parkinsonian Disorders; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Quinpirole; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Receptors, Drug; Reserpine; Rimonabant; Substantia Nigra; Tissue Distribution | 2000 |