anandamide and Neuroblastoma

anandamide has been researched along with Neuroblastoma* in 29 studies

Other Studies

29 other study(ies) available for anandamide and Neuroblastoma

ArticleYear
Role of pannexin-1 in the cellular uptake, release and hydrolysis of anandamide by T84 colon cancer cells.
    Scientific reports, 2019, 05-20, Volume: 9, Issue:1

    The large pore ion channel pannexin-1 (Panx1) has been reported to play a role in the cellular uptake and release of anandamide (AEA) in the hippocampus. It is not known whether this is a general mechanism or limited to the hippocampus. We have investigated this pharmacologically using T84 colon cancer cells. The cells expressed Panx1 at the mRNA level, and released ATP in a manner that could be reduced by treatment with the Panx1 inhibitors carbenoxolone and mefloquine and the Panx1 substrate SR101. However, no significant effects of these compounds upon the uptake or hydrolysis of exogenously applied AEA was seen. Uptake by T84 cells of the other main endocannabinoid 2-arachidonoylglycerol and the AEA homologue palmitoylethanolamide was similarly not affected by carbenoxolone or mefloquine. Total release of tritium from [

    Topics: Amides; Arachidonic Acids; Biological Transport; Carbenoxolone; Cell Line, Tumor; Colonic Neoplasms; Connexins; Endocannabinoids; Ethanolamines; Hippocampus; Humans; Hydrolysis; Mefloquine; Nerve Tissue Proteins; Neuroblastoma; Palmitic Acids; PC-3 Cells; Polyunsaturated Alkamides

2019
Ceramide binding to anandamide increases its half-life and potentiates its cytotoxicity in human neuroblastoma cells.
    Chemistry and physics of lipids, 2017, Volume: 205

    Anandamide (AEA) is a ubiquitous lipid that exerts neurotransmitter functions but also controls important biological functions such as proliferation, survival, or programmed cell death. The latter effects are also regulated by ceramide, a lipid enzymatically generated from sphingomyelin hydrolysis by sphingomyelinase. Ceramide has been shown to increase the cellular toxicity of AEA, but the mechanisms controlling this potentiating effect remained unclear. Here we have used a panel of in silico, physicochemical, biochemical and cellular approaches to study the crosstalk between AEA and ceramide apoptotic pathways. Molecular dynamics simulations indicated that AEA and ceramide could form a stable complex in phosphatidylcholine membranes. Consistent with these data, we showed that AEA can specifically insert into ceramide monolayers whereas it did not penetrate into sphingomyelin membranes. Then we have studied the effects of ceramide on AEA-induced toxicity of human neuroblastoma cells. In these experiments, the cells have been either naturally enriched in ceramide by neutral sphingomyelinase pre-incubation or treated with C2-ceramide, a biologically active ceramide analog. Both treatments significantly increased the cytotoxicity of AEA as assessed by the MTS mitochondrial toxicity assay. This effect was correlated with the concomitant accumulation of natural ceramide (or its synthetic analog) and AEA in the cells. A kinetic study of AEA hydrolysis showed that ceramide inhibited the fatty acid amino hydrolase (FAAH) activity in cell extracts. Taken together, these data suggested that ceramide binds to AEA, increases its half-life and potentiates its cytotoxicity. Overall, these mechanisms account for a functional cross-talk between AEA and ceramide apoptotic pathways.

    Topics: Apoptosis; Arachidonic Acids; Cell Line, Tumor; Cell Membrane; Cell Survival; Ceramides; Cholesterol; Endocannabinoids; Half-Life; Humans; Hydrolases; Hydrolysis; Membrane Lipids; Membranes, Artificial; Models, Molecular; Molecular Dynamics Simulation; Neuroblastoma; Polyunsaturated Alkamides

2017
Increasing antiproliferative properties of endocannabinoids in N1E-115 neuroblastoma cells through inhibition of their metabolism.
    PloS one, 2011, Volume: 6, Issue:10

    The antitumoral properties of endocannabinoids received a particular attention these last few years. Indeed, these endogenous molecules have been reported to exert cytostatic, apoptotic and antiangiogenic effects in different tumor cell lines and tumor xenografts. Therefore, we investigated the cytotoxicity of three N-acylethanolamines--N-arachidonoylethanolamine (anandamide, AEA), N-palmitoylethanolamine (PEA) and N-oleoylethanolamine (OEA)--which were all able to time- and dose-dependently reduce the viability of murine N1E-115 neuroblastoma cells. Moreover, several inhibitors of FAAH and NAAA, whose presence was confirmed by RT-PCR in the cell line, induced cell cytotoxicity and favored the decrease in cell viability caused by N-acylethanolamines. The most cytotoxic treatment was achieved by the co-incubation of AEA with the selective FAAH inhibitor URB597, which drastically reduced cell viability partly by inhibiting AEA hydrolysis and consequently increasing AEA levels. This combination of molecules synergistically decreased cell proliferation without inducing cell apoptosis or necrosis. We found that these effects are independent of cannabinoid, TRPV1, PPARα, PPARγ or GPR55 receptors activation but seem to occur through a lipid raft-dependent mechanism. These findings further highlight the interest of targeting the endocannabinoid system to treat cancer. More particularly, this emphasizes the great potential benefit of designing novel anti-cancerous therapies based on the association of endocannabinoids and inhibitors of their hydrolysis.

    Topics: Amides; Animals; Antineoplastic Agents; Arachidonic Acids; Cannabinoid Receptor Modulators; Cell Line, Tumor; Cell Proliferation; Endocannabinoids; Ethanolamines; Metabolism; Mice; Neoplasms; Neuroblastoma; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides

2011
Evidence for the intracellular accumulation of anandamide in adiposomes.
    Cellular and molecular life sciences : CMLS, 2008, Volume: 65, Issue:5

    Anandamide is a lipid messenger that carries out a wide variety of biological functions. It has been suggested that anandamide accumulation involves binding to a saturable cellular component. To identify the structure(s) involved in this process, we analyzed the intracellular distribution of both biotinylated and radiolabeled anandamide, providing direct evidence that lipid droplets, also known as adiposomes, constitute a dynamic reservoir for the sequestration of anandamide. In addition, confocal microscopy and biochemical studies revealed that the anandamide-hydrolase is also spatially associated with lipid droplets, and that cells with a larger adiposome compartment have an enhanced catabolism of anandamide. Overall, these findings suggest that adiposomes may have a critical role in accumulating anandamide, possibly by connecting plasma membrane to internal organelles along the metabolic route of this endocannabinoid.

    Topics: Adipocytes; Amidohydrolases; Arachidonic Acids; Blotting, Western; Cannabinoid Receptor Modulators; Cells, Cultured; Endocannabinoids; Humans; Keratinocytes; Lipid Metabolism; Membrane Microdomains; Microscopy, Fluorescence; Neuroblastoma; Organelles; Polyunsaturated Alkamides; Subcellular Fractions

2008
Anandamide protects from low serum-induced apoptosis via its degradation to ethanolamine.
    The Journal of biological chemistry, 2007, Mar-16, Volume: 282, Issue:11

    Anandamide (AEA) is a lipid molecule belonging to the family of endocannabinoids. Various studies report neuroprotective activity of AEA against toxic insults, such as ischemic conditions and excitotoxicity, whereas some show that AEA has pro-apoptotic effects. Here we have shown that AEA confers a protective activity in N18TG2 murine neuroblastoma cells subjected to low serum-induced apoptosis. We have demonstrated that the protection from apoptosis by AEA is not mediated via the CB1 receptor, the CB2 receptor, or the vanilloid receptor 1. Interestingly, breakdown of AEA by fatty acid amide hydrolase is required for the protective effect of AEA. Furthermore, the ethanolamine (EA) generated in this reaction is the metabolite responsible for the protective response. The elevation in the levels of reactive oxygen species during low serum-induced apoptosis is not affected by AEA or EA. On the other hand, AEA and EA reduce caspase 3/7 activity, and AEA attenuates the cleavage of PARP-1. Taken together, our results demonstrate a role for AEA and EA in the protection against low serum-induced apoptosis.

    Topics: Amidohydrolases; Animals; Apoptosis; Arachidonic Acids; Caspase 3; Caspase 7; Cell Line, Tumor; DNA Fragmentation; Dose-Response Relationship, Drug; Endocannabinoids; Ethanolamine; Flow Cytometry; Ischemia; Mice; Neuroblastoma; Polyunsaturated Alkamides; Reactive Oxygen Species; Receptors, Cannabinoid; TRPV Cation Channels

2007
Activation of recombinant human TRPV1 receptors expressed in SH-SY5Y human neuroblastoma cells increases [Ca(2+)](i), initiates neurotransmitter release and promotes delayed cell death.
    Journal of neurochemistry, 2007, Volume: 102, Issue:3

    The transient receptor potential (TRP) vanilloid receptor subtype 1 (TRPV1) is a ligand-gated, Ca(2+)-permeable ion channel in the TRP superfamily of channels. We report the establishment of the first neuronal model expressing recombinant human TRPV1 (SH-SY5Y(hTRPV1)). SH-SY5Y human neuroblastoma cells were stably transfected with hTRPV1 using the Amaxa Biosystem (hTRPV1 in pIREShyg2 with hygromycin selection). Capsaicin, olvanil, resiniferatoxin and the endocannabinoid anandamide increased [Ca(2+)](i) with potency (EC(50)) values of 2.9 nmol/L, 34.7 nmol/L, 0.9 nmol/L and 4.6 micromol/L, respectively. The putative endovanilloid N-arachidonoyl-dopamine increased [Ca(2+)](i) but this response did not reach a maximum. Capsaicin, anandamide, resiniferatoxin and olvanil mediated increases in [Ca(2+)](i) were inhibited by the TRPV1 antagonists capsazepine and iodo-resiniferatoxin with potencies (K(B)) of approximately 70 nmol/L and 2 nmol/L, respectively. Capsaicin stimulated the release of pre-labelled [(3)H]noradrenaline from monolayers of SH-SY5Y(hTRPV1) cells with an EC(50) of 0.6 nmol/L indicating amplification between [Ca(2+)](i) and release. In a perfusion system, we simultaneously measured [(3)H]noradrenaline release and [Ca(2+)](i) and observed that increased [Ca(2+)](i) preceded transmitter release. Capsaicin treatment also produced a cytotoxic response (EC(50) 155 nmol/L) that was antagonist-sensitive and mirrored the [Ca(2+)](I) response. This model displays pharmacology consistent with TRPV1 heterologously expressed in standard non-neuronal cells and native neuronal cultures. The advantage of SH-SY5Y(hTRPV1) is the ability of hTRPV1 to couple to neuronal biochemical machinery and produce large quantities of cells.

    Topics: Arachidonic Acids; Calcium; Calcium Signaling; Capsaicin; Cell Culture Techniques; Cell Death; Cell Line, Tumor; Cell Proliferation; Diterpenes; Dopamine; Endocannabinoids; Humans; Models, Biological; Neuroblastoma; Neurons; Norepinephrine; Polyunsaturated Alkamides; Recombinant Proteins; Synaptic Transmission; Transfection; TRPV Cation Channels; Up-Regulation

2007
Is there a temperature-dependent uptake of anandamide into cells?
    British journal of pharmacology, 2006, Volume: 149, Issue:1

    The temperature dependency of anandamide uptake into cells implies an active mechanism but this is still a matter of considerable debate. We have therefore re-examined the temperature-sensitive uptake of anandamide in ND7/23 mouse neuroblastoma x rat dorsal root ganglion neurone hybrid cells and RBL2H3 rat basophilic leukaemia cells.. Cellular uptake of [(3)H] anandamide was measured in the presence of bovine serum albumin at different incubation temperatures and times. Rates of uptake were also measured in wells alone. Free anandamide concentrations were calculated by published methods.. Anandamide showed a time-dependent saturable uptake into ND7/23 cells. The uptake was greater at 37 degrees C than at 4 degrees C for a given added anandamide concentration following a 5 min incubation. However, this temperature-dependency reflected temperature-dependent effects on the concentration of anandamide available for uptake, rather than the uptake process itself. A similar conclusion could be drawn for the rapid ( approximately 1 min) uptake of anandamide into RBL2H3 cells. In contrast, re-analysis of published data for P19 cells indicated a clear temperature-dependency of the uptake at long (15 min) incubation times. The level of anandamide retained by wells alone provided a better measure of free anandamide concentrations than calculated values.. ND7/23 cells may be a useful model system for the study of anandamide uptake. The temperature-dependent uptake of anandamide may reflect effects on free anandamide concentrations rather than on the uptake process itself.

    Topics: Animals; Arachidonic Acids; Basophils; Cell Line; Cell Line, Tumor; Endocannabinoids; Ganglia, Spinal; Hybrid Cells; Kinetics; Mice; Neuroblastoma; Ovalbumin; Polyunsaturated Alkamides; Rats; Regression Analysis; Serum Albumin, Bovine; Temperature

2006
Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. Implications for anandamide-induced apoptosis.
    The Journal of biological chemistry, 2005, Apr-01, Volume: 280, Issue:13

    Several G protein-coupled receptors function within lipid rafts plasma membrane microdomains, which may be important in limiting signal transduction. Here we show that treatment of rat C6 glioma cells with the raft disruptor methyl-beta-cyclodextrin (MCD) doubles the binding efficiency (i.e. the ratio between maximum binding and dissociation constant) of type-1 cannabinoid receptors (CB1R), which belong to the rhodopsin family of G protein-coupled receptors. In parallel, activation of CB1R by the endogenous agonist anandamide (AEA) leads to approximately 3-fold higher [35S]GTPgammaS binding in MCD-treated cells than in controls, and CB1R-dependent signaling via adenylate cyclase, and p42/p44 MAPK is almost doubled by MCD. Unlike CB1R, the other AEA-binding receptor TRPV1, the AEA synthetase NAPE-PLD, and the AEA hydrolase FAAH are not modulated by MCD, whereas the activity of the AEA membrane transporter (AMT) is reduced to approximately 50% of the controls. We also show that MCD reduces dose-dependently AEA-induced apoptosis in C6 cells but not in human CHP100 neuroblastoma cells, which mirror the endocannabinoid system of C6 cells but are devoid of CB1R. MCD reduces also cytochrome c release from mitochondria of C6 cells, and this effect is CB1R-dependent and partly mediated by activation of p42/p44 MAPK. Altogether, the present data suggest that lipid rafts control CB1R binding and signaling, and that CB1R activation underlies the protective effect of MCD against apoptosis.

    Topics: Animals; Apoptosis; Arachidonic Acids; beta-Cyclodextrins; Biological Transport; Cannabinoid Receptor Modulators; Cell Line, Tumor; Cell Membrane; Cell Separation; Cholesterol; Cyclic AMP; Dose-Response Relationship, Drug; Endocannabinoids; Flow Cytometry; Glioma; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Hydrolysis; Kinetics; Lipid Metabolism; Lipids; Membrane Microdomains; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Neuroblastoma; Neurons; Polyunsaturated Alkamides; Protein Binding; Rats; Receptor, Cannabinoid, CB1; Receptors, Cannabinoid; Rhodopsin; Signal Transduction; Time Factors

2005
Block of erg current by linoleoylamide, a sleep-inducing agent, in pituitary GH3 cells.
    European journal of pharmacology, 2003, Jan-01, Volume: 458, Issue:1-2

    Linoleoylamide is physiological constituent of neurons. The effects of this agent, also a sleep-inducing agent, on ion currents in pituitary GH(3) cells were investigated. Hyperpolarization-elicited K(+) currents in GH(3) cells bathed in a high-K(+), Ca(2+)-free solution were studied to determine the effects of linoleoylamide and other related compounds on the I(K(IR)) that was sensitive to inhibition by E-4031 and identified as an erg (ether-à-go-go-related-gene) current. Linoleoylamide suppressed the amplitude of I(K(IR)) in a concentration-dependent manner with an IC(50) value of 5 microM. Oleamide (20 microM) inhibited the amplitude of I(K(IR)), while neither arachidonic acid (20 microM) nor 14,15-epoxyeicosatrienoic acid (20 microM) had an effect on it. In GH(3) cells incubated with anandamide (20 microM) or arachidonic acid (20 microM), the linoleoylamide-induced inhibition of I(K(IR)) remained unaltered. In inside-out patches, arachidonic acid (20 microM) and 14,15-epoxyeicosatrienoic acid (20 microM) stimulated large-conductance Ca(2+)-activated K(+) channels; however, linoleoylamide (20 microM) had little or no effect on them. Under current-clamp mode, linoleoylamide (20 microM) increased the firing rate. In IMR-32 neuroblastoma cells, linoleoylamide also suppressed I(K(IR)). This study provides the evidence that linoleoylamide has a depressant effect on the erg current, and suggests that this effect may affect hormonal secretion.

    Topics: 8,11,14-Eicosatrienoic Acid; alpha-Linolenic Acid; Amides; Animals; Arachidonic Acid; Arachidonic Acids; Calcium; Calcium Channels, L-Type; Dose-Response Relationship, Drug; Endocannabinoids; Humans; Hydantoins; Imidazoles; Imidazolidines; Infant, Newborn; Linoleic Acids; Membrane Potentials; Neuroblastoma; Patch-Clamp Techniques; Piperazines; Piperidines; Pituitary Neoplasms; Polyunsaturated Alkamides; Potassium Channels; Pyridines; Tumor Cells, Cultured

2003
Evidence against the presence of an anandamide transporter.
    Proceedings of the National Academy of Sciences of the United States of America, 2003, Apr-01, Volume: 100, Issue:7

    On the basis of temperature dependency, saturability, selective inhibition, and substrate specificity, it has been proposed that an anandamide transporter exists. However, all of these studies have examined anandamide accumulation at long time points when downstream effects such as metabolism and intracellular sequestration are operative. In the current study, we have investigated the initial rates (<1 min) of anandamide accumulation in neuroblastoma and astrocytoma cells in culture and have determined that uptake is not saturable with increasing concentrations of anandamide. However, anandamide hydrolysis, after uptake in neuroblastoma cells, was saturable at steady-state time points (5 min), suggesting that fatty acid amide hydrolase (FAAH) may be responsible for observed saturation of uptake at long time points. In general, arvanil, olvanil, and N-(4-hydroxyphenyl)arachidonylamide (AM404) have been characterized as transport inhibitors in studies using long incubations. However, we found these "transport inhibitors" did not inhibit anandamide uptake in neuroblastoma and astrocytoma cells at short time points (40 sec or less). Furthermore, we confirmed that these inhibitors in vitro were actually inhibitors of FAAH. Therefore, the likely mechanism by which the transport inhibitors raise anandamide levels to exert pharmacological effects is by inhibiting FAAH, and they should be reevaluated in this context. Immunofluorescence has indicated that FAAH staining resides mainly on intracellular membranes of neuroblastoma cells, and this finding is consistent with our observed kinetics of anandamide hydrolysis. In summary, these data suggest that anandamide uptake is a process of simple diffusion. This process is driven by metabolism and other downstream events, rather than by a specific membrane-associated anandamide carrier.

    Topics: Arachidonic Acids; Astrocytoma; Biological Transport; Cannabinoids; Capsaicin; Carrier Proteins; Endocannabinoids; Humans; Immunohistochemistry; Kinetics; Neuroblastoma; Polyunsaturated Alkamides; Tumor Cells, Cultured

2003
Anandamide-induced neuroblastoma cell rounding via the CB1 cannabinoid receptors.
    Neuroreport, 2002, Apr-16, Volume: 13, Issue:5

    The CB1 cannabinoid receptor has been shown to couple with pertussis toxin (PTX)-sensitive Gi/o proteins and inhibit adenylyl cyclase. However, in certain conditions, CB1 mediates adenylyl cyclase activation, possibly through Gs-type G proteins. In rat B103 neuroblastoma cells in which CBI gene was endogenously expressed, anandamide inhibited forskolin-induced cAMP accumulation via PTX-sensitive pathways. When CB1 was heterologously over-expressed using a retroviral transfer, high concentrations of anandamide increased forskolin-induced cAMP accumulation, and this effect was more prominent when cells were pretreated with PTX. In CB1-over-expressing B103 cells, anandamide induced cell rounding via a PTX-insensitive/Rho kinase inhibitor-sensitive pathway. These results suggest that the CB1 receptor could couple with G proteins that activate Rho (possibly G12/13) as well as Gi/o and Gs.

    Topics: Animals; Arachidonic Acids; Calcium Channel Blockers; Cannabinoids; Cell Size; Cyclic AMP; Dose-Response Relationship, Drug; Endocannabinoids; Mice; Mice, Inbred C57BL; Neuroblastoma; Polyunsaturated Alkamides; Rats; Receptors, Cannabinoid; Receptors, Drug; Tumor Cells, Cultured

2002
Gas chromatography-mass spectrometry analysis of endogenous cannabinoids in healthy and tumoral human brain and human cells in culture.
    Journal of neurochemistry, 2001, Volume: 76, Issue:2

    Endocannabinoids are lipid mediators thought to modulate central and peripheral neural functions. We report here gas chromatography-electron impact mass spectrometry analysis of human brain, showing that lipid extracts contain anandamide and 2-arachidonoylglycerol (2-AG), the most active endocannabinoids known to date. Human brain also contained the endocannabinoid-like compounds N-oleoylethanolamine, N-palmitoylethanolamine and N-stearoylethanolamine. Anandamide and 2-AG (0.16 +/- 0.05 and 0.10 +/- 0.05 nmol/mg protein, respectively) represented 7.7% and 4.8% of total endocannabinoid-like compounds, respectively. N-Palmitoyethanolamine was the most abundant (50%), followed by N-oleoyl (23.6%) and N-stearoyl (13.9%) ethanolamines. A similar composition in endocannabinoid-like compounds was found in human neuroblastoma CHP100 and lymphoma U937 cells, and also in rat brain. Remarkably, human meningioma specimens showed an approximately six-fold smaller content of all N-acylethanolamines, but not of 2-AG, and a similar decrease was observed in a human glioblastoma. These ex vivo results fully support the purported roles of endocannabinoids in the nervous system.

    Topics: Amides; Animals; Arachidonic Acids; Brain Chemistry; Brain Neoplasms; Cannabinoid Receptor Modulators; Cannabinoids; Endocannabinoids; Ethanolamines; Gas Chromatography-Mass Spectrometry; Glioblastoma; Glycerides; Humans; Lymphoma; Meningioma; Neuroblastoma; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Wistar; Reference Values; Stearic Acids; Tumor Cells, Cultured; U937 Cells

2001
Characterization of palmitoylethanolamide transport in mouse Neuro-2a neuroblastoma and rat RBL-2H3 basophilic leukaemia cells: comparison with anandamide.
    British journal of pharmacology, 2001, Volume: 132, Issue:8

    The endogenous cannabinoid receptor agonist anandamide (AEA) and the related compound palmitoylethanolamide (PEA) are inactivated by transport into cells followed by metabolism by fatty acid amide hydrolase (FAAH). The cellular uptake of AEA has been characterized in detail, whereas less is known about the properties of the PEA uptake, in particular in neuronal cells. In the present study, the pharmacological and functional properties of PEA and AEA uptake have been investigated in mouse Neuro-2a neuroblastoma and, for comparison, in rat RBL-2H3 basophilic leukaemia cells. Saturable uptake of PEA and AEA into both cell lines were demonstrated with apparent K(M) values of 28 microM (PEA) and 10 microM (AEA) in Neuro-2a cells, and 30 microM (PEA) and 9.3 microM (AEA) in RBL-2H3 cells. Both PEA and AEA uptake showed temperature-dependence but only the AEA uptake was sensitive to treatment with Pronase and phenylmethylsulfonyl fluoride. The AEA uptake was inhibited by AM404, 2-arachidonoylglycerol (2-AG), R1- and S1-methanandamide, arachidonic acid and olvanil with similar potencies for the two cell types. PEA, up to a concentration of 100 microM, did not affect AEA uptake in either cell line. AEA, 2-AG, arachidonic acid, R1-methanandamide, (9)-THC, and cannabidiol inhibited PEA transport in both cell lines. The non-steroidal anti-inflammatory drug indomethacin inhibited the AEA uptake but had very weak effects on the uptake of PEA. From these data, it can be concluded that PEA is transported in to cells both by passive diffusion and by a facilitated transport that is pharmacologically distinguishable from AEA uptake.

    Topics: Amides; Animals; Arachidonic Acids; Brain Neoplasms; Cannabinoids; Cell Survival; Endocannabinoids; Ethanol; Ethanolamines; Kinetics; Leukemia, Basophilic, Acute; Mast Cells; Mice; Neuroblastoma; Palmitic Acids; Phenylmethylsulfonyl Fluoride; Polyunsaturated Alkamides; Pronase; Protease Inhibitors; Rats; Tumor Cells, Cultured

2001
Anandamide and 2-arachidonoylglycerol inhibit fatty acid amide hydrolase by activating the lipoxygenase pathway of the arachidonate cascade.
    Biochemical and biophysical research communications, 2000, Nov-30, Volume: 278, Issue:3

    Treatment of intact human neuroblastoma CHP100 cells with anandamide (arachidonoylethanolamide, AEA) or 2-arachidonoylglycerol (2-AG) inhibits intracellular fatty acid amide hydrolase (FAAH). This effect was not associated with covalent modifications of FAAH, since specific inhibitors of farnesyltransferase, kinases, phosphatases, glycosyltransferase or nitric oxide synthase were ineffective. Electrophoretic analysis of (33)P-labelled proteins, Western blot with anti-phosphotyrosine antibodies, and glycan analysis of cellular proteins confirmed the absence of covalent modifications of FAAH. The inhibition by AEA was paralleled by an increased arachidonate release, which was not observed upon treatment of cells with linoleoylethanolamide, palmitoylethanolamide, or oleoylethanolamide. Moreover, cell treatment with AEA or 2-AG increased the activity of cyclooxygenase and 5-lipoxygenase, and the hydro(pero)xides generated from arachidonate by lipoxygenase were shown to inhibit FAAH, with inhibition constants in the low micromolar range. Consistently, inhibitors of 5-lipoxygenase, but not those of cyclooxygenase, significantly counteracted the inhibition of FAAH by AEA or 2-AG.

    Topics: Amidohydrolases; Arachidonate 5-Lipoxygenase; Arachidonic Acids; Endocannabinoids; Enzyme Activation; Enzyme Inhibitors; Ethanolamines; Glycerides; Humans; Kinetics; Lipid Peroxides; Lipoxygenase; Lipoxygenase Inhibitors; Neuroblastoma; Polyunsaturated Alkamides; Prostaglandin-Endoperoxide Synthases; Structure-Activity Relationship; Tumor Cells, Cultured

2000
Chronic ethanol increases the cannabinoid receptor agonist anandamide and its precursor N-arachidonoylphosphatidylethanolamine in SK-N-SH cells.
    Journal of neurochemistry, 1999, Volume: 72, Issue:2

    In an earlier study, we demonstrated that chronic ethanol (EtOH) exposure down-regulated the cannabinoid receptors (CB1) in mouse brain synaptic plasma membrane. In the present study, we investigated the effect of chronic EtOH on the formation of anandamide (AnNH), an endogenous cannabimimetic compound, and its precursor N-arachidonoylphosphatidylethanolamine (N-ArPE) in SK-N-SH cells that were prelabeled with [3H]arachidonic acid. The results indicate that exposure of SK-N-SH cells to EtOH (100 mM) for 72 h significantly increased levels of [3H]AnNH and [3H]N-ArPE (p < 0.05) (1.43-fold for [3H]AnNH and 1.65-fold for [3H]N-ArPE). Exposure of SK-N-SH cells to EtOH (100 mM, 24 h) inhibited initially the formation of [3H]AnNH at 24 h, followed by a progressive increase, reaching a statistical significance level at 72 h (p < 0.05). [3H]N-ArPE increased gradually to a statistically significant level after 48 and 72 h (p < 0.05). Incubation with exogenous ethanolamine (7 mM) and EtOH (100 mM, 72 h) did not result in an additive increase in the formation of [3H]AnNH. The formation of [3H]AnNH and [3H]N-ArPE by EtOH was enhanced by the Ca2+ ionophore A23187 or by the depolarizing agent veratridine and the K+ channel blocker 4-aminopyridine. Further, the EtOH-induced formation of [3H]AnNH and [3H]N-ArPE was inhibited by exogenous AnNH, whereas only [3H]AnNH formation was inhibited by the CB1 receptor antagonist SR141716A and pertussis toxin, suggesting that the CB1 receptor and G(i/o) protein mediated the regulation of AnNH levels. The observed increase in the levels of these lipids in SK-N-SH cells may be a mechanism for neuronal adaptation and may serve as a compensatory mechanism to counteract the continuous presence of EtOH. The present observation taken together with our previous results indicate the involvement of the endocannabinoid system in mediating some of the pharmacological actions of EtOH and may constitute part of a common brain pathway mediating reinforcement of drugs of abuse including EtOH.

    Topics: Arachidonic Acid; Arachidonic Acids; Binding, Competitive; Calcium; Cannabinoid Receptor Modulators; Cannabinoids; Cell Survival; Central Nervous System Depressants; Endocannabinoids; Ethanol; GTP-Binding Proteins; Humans; Neuroblastoma; Pertussis Toxin; Phosphatidylethanolamines; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Tritium; Tumor Cells, Cultured; Virulence Factors, Bordetella

1999
Arachidonoylserotonin and other novel inhibitors of fatty acid amide hydrolase.
    Biochemical and biophysical research communications, 1998, Jul-30, Volume: 248, Issue:3

    Fatty acid amide hydrolase (FAAH) catalyzes the hydrolysis of bioactive fatty acid amides and esters such as the endogenous cannabinoid receptor ligands, anandamide (N-arachidonoyl-ethanolamine) and 2-arachidonoylglycerol, and the putative sleep inducing factor cis-9-octadecenoamide (oleamide). Most FAAH blockers developed to date also inhibit cytosolic phospholipase A2 (cPLA2) and/or bind to the CB1 cannabinoid receptor subtype. Here we report the finding of four novel FAAH inhibitors, two of which, malhamensilipin A and grenadadiene, were screened out of a series of thirty-two different algal natural products, and two others, arachidonoylethylene glycol (AEG) and arachidonoyl-serotonin (AA-5-HT) were selected out of five artificially functionalized polyunsaturated fatty acids. When using FAAH preparations from mouse neuroblastoma N18TG2 cells and [14C]anandamide as a substrate, the IC50s for these compounds ranged from 12.0 to 26 microM, the most active compound being AA-5-HT. This substance was also active on FAAH from rat basophilic leukaemia (RBL-2H3) cells (IC50 = 5.6 microM), and inhibited [14C]anandamide hydrolysis by both N18TG2 and RBL-2H3 intact cells without affecting [14C]anandamide uptake. While AEG behaved as a competitive inhibitor and was hydrolyzed to arachidonic acid (AA) by FAAH preparations, AA-5-HT was resistant to FAAH-catalyzed hydrolysis and behaved as a tight-binding, albeit non-covalent, mixed inhibitor. AA-5-HT did not interfere with cPLA2-mediated, ionomycin or antigen-induced release of [3H]AA from RBL-2H3 cells, nor with cPLA2 activity in cell-free experiments. Finally, AA-5-HT did not activate CB1 cannabinoid receptors since it acted as a very weak ligand in in vitro binding assays, and, at 10-15 mg/kg body weight, it was not active in the 'open field', 'hot plate' and rectal hypothermia tests carried out in mice. Conversely AEG behaved as a cannabimimetic substance in these tests as well as in the 'ring' immobility test where AA-5-HT was also active. AA-5-HT is the first FAAH inhibitor reported to date which is inactive both against cPLA2 and at CB1 receptors, whereas AEG represents a new type of cannabinoid receptor agonist.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Cyclopropanes; Endocannabinoids; Enzyme Inhibitors; Esters; Ethylene Glycols; Kinetics; Leukemia, Basophilic, Acute; Lipids; Mice; Neuroblastoma; Polyunsaturated Alkamides; Rats; Serotonin; Structure-Activity Relationship; Substrate Specificity; Tumor Cells, Cultured

1998
Interactions between synthetic vanilloids and the endogenous cannabinoid system.
    FEBS letters, 1998, Oct-09, Volume: 436, Issue:3

    The chemical similarity between some synthetic agonists of vanilloid receptors, such as olvanil (N-vanillyl-cis-9-octadecenoamide), and the 'endocannabinoid' anandamide (arachidonoyl-ethanolamide, AEA), suggests possible interactions between the cannabinoid and vanilloid signalling systems. Here we report that olvanil is a stable and potent inhibitor of AEA facilitated transport into rat basophilic leukemia (RBL-2H3) cells. Olvanil blocked both the uptake and the hydrolysis of [14C]AEA by intact RBL-2H3 cells (IC50 = 9 microM), while capsaicin and pseudocapsaicin (N-vanillyl-nonanamide) were much less active. Olvanil was more potent than previously reported inhibitors of AEA facilitated transport, i.e. phloretin (IC50 = 80 microM), AM404 (12.9% inhibition at 10 microM) or oleoylethanolamide (27.5% inhibition at 10 microM). Olvanil was a poor inhibitor of [14C]AEA hydrolysis by RBL-2H3 and N18TG2 cell membranes, suggesting that the inhibitory effect on [14C]AEA breakdown observed in intact cells was due to inhibition of [14C]AEA uptake. Olvanil was stable to enzymatic hydrolysis, and (i) displaced the binding of high affinity cannabinoid receptor ligands to membrane preparations from N18TG2 cells and guinea pig forebrain (Ki = 1.64-7.08 microM), but not from cells expressing the CB2 cannabinoid receptor subtype; (ii) inhibited forskolin-induced cAMP formation in intact N18TG2 cells (IC50 = 1.60 microM), this effect being reversed by the selective CB1 antagonist SR141716A. Pseudocapsaicin, but not capsaicin, also selectively bound to CB1 receptor-containing membranes. These data suggest that some of the analgesic actions of olvanil may be due to its interactions with the endogenous cannabinoid system, and may lead to the design of a novel class of cannabimimetics with potential therapeutic applications as analgesics.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Arachidonic Acids; Cannabinoid Receptor Modulators; Cannabinoids; Capsaicin; Cell Line; Endocannabinoids; Kinetics; Leukemia, Basophilic, Acute; Macrophages; Mice; Neuroblastoma; Polyunsaturated Alkamides; Rats; Receptors, Drug; Tumor Cells, Cultured

1998
Anandamide hydrolysis by human cells in culture and brain.
    The Journal of biological chemistry, 1998, Nov-27, Volume: 273, Issue:48

    Anandamide (arachidonylethanolamide; AnNH) has important neuromodulatory and immunomodulatory activities. This lipid is rapidly taken up and hydrolyzed to arachidonate and ethanolamine in many organisms. As yet, AnNH inactivation has not been studied in humans. Here, a human brain fatty-acid amide hydrolase (FAAH) has been characterized as a single protein of 67 kDa with a pI of 7.6, showing apparent Km and Vmax values for AnNH of 2.0 +/- 0.2 microM and 800 +/- 75 pmol.min-1.mg of protein-1, respectively. The optimum pH and temperature for AnNH hydrolysis were 9.0 and 37 degreesC, respectively, and the activation energy of the reaction was 43.5 +/- 4.5 kJ.mol-1. Hydro(pero)xides derived from AnNH or its linoleoyl analogues by lipoxygenase action were competitive inhibitors of human brain FAAH, with apparent Ki values in the low micromolar range. One of these compounds, linoleoylethanolamide is the first natural inhibitor (Ki = 9.0 +/- 0.9 microM) of FAAH as yet discovered. An FAAH activity sharing several biochemical properties with the human brain enzyme was demonstrated in human neuroblastoma CHP100 and lymphoma U937 cells. Both cell lines have a high affinity transporter for AnNH, which had apparent Km and Vmax values for AnNH of 0.20 +/- 0.02 microM and 30 +/- 3 pmol.min-1.mg of protein-1 (CHP100 cells) and 0.13 +/- 0.01 microM and 140 +/- 15 pmol.min-1.mg of protein-1 (U937 cells), respectively. The AnNH carrier of both cell lines was activated up to 170% of the control by nitric oxide.

    Topics: Aged; Amidohydrolases; Arachidonic Acids; Biological Transport; Brain; Brain Neoplasms; Cannabinoids; Cell Membrane; Endocannabinoids; Enzyme Inhibitors; Humans; Hydrolysis; Kinetics; Male; Meningeal Neoplasms; Meningioma; Neuroblastoma; Polyunsaturated Alkamides; Tumor Cells, Cultured; U937 Cells

1998
Biosynthesis, release and degradation of the novel endogenous cannabimimetic metabolite 2-arachidonoylglycerol in mouse neuroblastoma cells.
    The Biochemical journal, 1997, Mar-01, Volume: 322 ( Pt 2)

    The monoacylglycerol 2-arachidonoylglycerol (2-AG) has been recently suggested as a possible endogenous agonist at cannabinoid receptors both in brain and peripheral tissues. Here we report that a widely used model for neuronal cells, mouse N18TG2 neuroblastoma cells, which contain the CB1 cannabinoid receptor, also biosynthesize, release and degrade 2-AG. Stimulation with ionomycin (1-5 microM) of intact cells prelabelled with [3H]arachidonic acid ([3H]AA) led to the formation of high levels of a radioactive component with the same chromatographic behaviour as synthetic standards of 2-AG in TLC and HPLC analyses. The amounts of this metabolite were negligible in unstimulated cells, and greatly decreased in cells stimulated in the presence of the Ca2+-chelating agent EGTA. The purified component was further characterized as 2-AG by: (1) digestion with Rhizopus arrhizus lipase, which yielded radiolabelled AA; (2) gas chromatographic-MS analyses; and (3) TLC analyses on borate-impregnated plates. Approx. 20% of the 2-AG produced by stimulated cells was found to be released into the incubation medium when this contained 0.1% BSA. Subcellular fractions of N18TG2 cells were shown to contain enzymic activity or activities catalysing the hydrolysis of synthetic [3H]2-AG to [3H]AA. Cell homogenates were also found to convert synthetic [3H]sn-1-acyl-2-arachidonoylglycerols (AcAGs) into [3H]2-AG, suggesting that 2-AG might be derived from AcAG hydrolysis. When compared with ionomycin stimulation, treatment of cells with exogenous phospholipase C, but not with phospholipase D or A2, led to a much higher formation of 2-AG and AcAGs. However, treatment of cells with phospholipase A2 10 min before ionomycin stimulation caused a 2.5-3-fold potentiation of 2-AG and AcAG levels with respect to ionomycin alone, whereas preincubation with the phospholipase C inhibitor neomycin sulphate did not inhibit the effect of ionomycin on 2-AG and AcAG levels. These results suggest that the Ca2+-induced formation of 2-AG proceeds through the intermediacy of AcAGs but not necessarily through phospholipase C activation. By showing for the first time the existence of molecular mechanisms for the inactivation and the Ca2+-dependent biosynthesis and release of 2-AG in neuronal cells, the present paper supports the hypothesis that this cannabimimetic monoacylglycerol might be a physiological neuromodulator.

    Topics: Animals; Arachidonic Acids; Calcium; Calcium Channel Blockers; Cannabinoids; Endocannabinoids; Enzyme Inhibitors; Glycerides; Hydrolysis; Ionomycin; Ionophores; Mice; Neuroblastoma; Neurons; Polyunsaturated Alkamides; Receptors, Cannabinoid; Receptors, Drug; Subcellular Fractions; Tumor Cells, Cultured

1997
The endogenous cannabimimetic eicosanoid, anandamide, induces arachidonate release in J774 mouse macrophages.
    Advances in experimental medicine and biology, 1997, Volume: 407

    Topics: 8-Bromo Cyclic Adenosine Monophosphate; Amides; Animals; Arachidonic Acid; Arachidonic Acids; Cyclic AMP; Dinoprostone; Endocannabinoids; Enzyme Activation; Ethanolamines; Genistein; GTP-Binding Proteins; Linoleic Acids; Macrophages; Mice; Naphthalenes; Neuroblastoma; Nitriles; Palmitic Acids; Phospholipases A; Polyunsaturated Alkamides; Second Messenger Systems; Staurosporine; Tumor Cells, Cultured; Tyrphostins; Virulence Factors, Bordetella

1997
The sleep inducing factor oleamide is produced by mouse neuroblastoma cells.
    Biochemical and biophysical research communications, 1997, Oct-20, Volume: 239, Issue:2

    Cis-9,10-octadecenoamide (oleamide) was isolated from the cerebrospinal fluid of sleep-deprived mammals and shown to induce sleep in rats. The enzyme catalyzing the hydrolysis of the amide bond of oleamide as well as of anandamide, the putative endogenous ligand of cannabinoid receptors, was purified from rat liver, cloned, shown to be expressed also in brain and named fatty acid amide hydrolase (FAAH). The enzymatic synthesis of oleamide from oleic acid and ammonia by rat brain microsomes has been also described. However, no evidence has been reported so far on the neuronal origin of oleamide, necessary in order to postulate for this compound a role as a neuromodulator. Here we show for the first time that oleamide is produced by a neuronal cell type and that its biosynthesis in intact neurons is not likely to occur through the direct condensation of oleic acid and ammonia. A lipid metabolite was extracted and purified from mouse neuroblastoma N18TG2 cells through a sequence of chromatographic steps and characterized as oleamide by means of gas chromatography/electron impact mass spectrometry (GC/EIMS). The amount of oleamide, as estimated by GC analyses carried out in comparison with known amounts of synthetic oleamide, was 55.0+/-09.5 pmols/10(7) cells, compared to less than 0.7 pmol/10(7) cells for anandamide in the same cells. When N18TG2 cells were prelabeled with [14C]oleic acid and the lipids extracted and purified, a radioactive component with the same chromatographic behavior as oleamide was found whose levels: (1) were not significantly influenced by stimulation with ionomycin; (2) were slightly increased by incubation with FAAH inhibitor phenyl-methyl-sulphonyl-fluoride (PMSF); (3) appeared to correlate with [14C]oleic acid incorporation into phospholipids but not with free [14C]oleic acid levels. N18TG2 cell membranes were shown to contain an enzymatic activity catalyzing the synthesis of oleamide from oleic acid and ammonia. This activity was inhibited by FAAH selective inhibitors arachidonoyltrifluoromethylketone and methylarachidonoylfluorophosphonate, as well as by an excess of anandamide, and by PMSF at the same concentration which increased oleamide formation in intact cells. These data suggest that a FAAH-like enzyme working "in reverse" may be responsible for the formation of oleamide in cell-free preparations but not in whole cells.

    Topics: Animals; Arachidonic Acids; Cannabinoids; Chromatography, High Pressure Liquid; Chromatography, Thin Layer; Endocannabinoids; Gas Chromatography-Mass Spectrometry; Mice; Neuroblastoma; Oleic Acids; Polyunsaturated Alkamides; Sleep; Tumor Cells, Cultured

1997
Binding of aminoalkylindoles to noncannabinoid binding sites in NG108-15 cells.
    Cellular and molecular neurobiology, 1997, Volume: 17, Issue:5

    1. Aminoalkylindoles, typified by WIN 55212-2, bind to G protein-coupled cannabinoid receptors in brain. Although cannabinoids inhibit adenylyl cyclase in NG108-15 neuroblastoma x glioma hybrid cells, cannabinoid receptor binding in these cells has not been described previously. This study compares pharmacological characteristics of [3H]WIN 55212-2 binding sites in rat cerebellar membranes and in NG108-15 membranes. 2. Although the KD of specified [3H]WIN 55212-2 binding was similar in brain and NG108-15 membranes, the Bmax was 10 times lower in NG108-15 than in cerebellar membranes. In both brain and NG108-15 membranes, aminoalkylindole analogues were relatively potent in displacing [3H]WIN 55212-2 binding. However, IC50 values for more traditional cannabinoids were significantly higher in NG108-15 membranes than in brain, e.g., the Ki values for CP55,940 were 1.2 nM in brain and > 5000nM in NG108-15 membranes. Moreover, sodium and GTP-gamma-S decreased [3H]WIN 55212-2 binding in brain but not in NG108-15 membranes. 3. These data suggest that WIN 55212-2 does not label traditional cannabinoid receptors in NG108-15 cells and that these novel aminoalkylindole binding sites are not coupled to G proteins.

    Topics: Analgesics; Animals; Arachidonic Acids; Benzoxazines; Binding, Competitive; Calcium Channel Blockers; Cannabinoids; Cerebellum; Cyclohexanols; Endocannabinoids; Glioma; Guanosine 5'-O-(3-Thiotriphosphate); Hybrid Cells; Male; Membrane Proteins; Morpholines; Naphthalenes; Neuroblastoma; Polyunsaturated Alkamides; Radioligand Assay; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Receptors, Drug; Sensitivity and Specificity; Tritium

1997
Biosynthesis of anandamide and related acylethanolamides in mouse J774 macrophages and N18 neuroblastoma cells.
    The Biochemical journal, 1996, Jun-15, Volume: 316 ( Pt 3)

    Anandamide (arachidonoylethanolamide, AnNH) has been recently proposed as the endogenous ligand at the brain cannabinoid receptor CB1. Two alternative pathways have been suggested for the biosynthesis of this putative mediator in the central nervous system. Here we present data (1) substantiating further the mechanism by which AnNH is produced by phospholipase D (PLD)-catalysed hydrolysis of N-arachidonoylphosphatidylethanolamine in mouse neuroblastoma N18TG2 cells, and (2) suggesting for the first time that AnNH is biosynthesized via the same mechanism in a non-neuronal cell line, mouse J774 macrophages, together with other acylethanolamides and is possibly involved in the control of the immune/inflammatory response. Lipids from both neuroblastoma cells and J774 macrophages were shown to contain a family of N-acylphosphatidylethanolamines (N-aPEs), including the possible precursor of AnNH, N-arachidonoyl-PE. Treatment with exogenous PLD, but not with exogenous phospholipase A2 and ethanolamine, resulted in the production of a series of acylethanolamides (AEs), including AnNH, from both cell types. The formation of AEs was accompanied by a decrease in the levels of the corresponding N-aPEs. Enzymically active homogenates from either neuroblastoma cells or J774 macrophages were shown to convert synthetic N-[3H]arachidonoyl-PE into [3H]AnNH, thus suggesting that in both cells an enzyme is present which is capable of catalysing the hydrolysis of N-aPE(s) to the corresponding AE(s). Finally, as previously shown in central neurons, on stimulation with ionomycin, J774 macrophages also produced a mixture of AEs including AnNH and palmitoylethanolamide, which has been proposed as the preferential endogenous ligand at the peripheral cannabinoid receptor CB2 and, consequently, as a possible down-modulator of mast cells. On the basis of this as well as previous findings it is now possible to hypothesize for AnNH and palmitoylethanolamide, co-synthesized by macrophages, a role as peripheral mediators with multiple actions on blood cell function.

    Topics: Animals; Arachidonic Acids; Cannabinoids; Carbon Radioisotopes; Cell Line; Chromatography, High Pressure Liquid; Chromatography, Thin Layer; Endocannabinoids; Ethanolamine; Ethanolamines; Macrophages; Mice; Neuroblastoma; Polyunsaturated Alkamides; Tritium; Tumor Cells, Cultured

1996
Potential biosynthetic connections between the two cannabimimetic eicosanoids, anandamide and 2-arachidonoyl-glycerol, in mouse neuroblastoma cells.
    Biochemical and biophysical research communications, 1996, Oct-03, Volume: 227, Issue:1

    Anandamide (arachidonoyl-ethanolamide, AnNH) and 2-arachidonoyl-glycerol (2-AG) have been suggested to act as endogenous agonists at the brain cannabinoid receptor, and their biosynthetic and degradative mechanisms in nervous tissues and cells have also been partially elucidated. Here we present evidence for the presence, in mouse N18TG2 neuroblastoma cells, of enzymatic activities potentially responsible for the biosynthesis of AnNH and 2-AG from a common phospholipid precursor. Cell homogenates were shown to catalyze: (a) the transfer of an arachidonoyl moiety from the sn-1 position of sn-1,2-di-arachidonoyl-phosphatidylcholine (AAPC) to phosphatidyl-ethanolamine (PE) to form N-arachidonoyl-PE (N-ArPE) and sn-1-lyso-2-arachidonoyl-PC (lyso-APC), (b) the hydrolysis of N-AtPE to AnNH, (c) the hydrolysis of lyso-APC to 2-AG, (d) the hydrolysis of AAPC to sn-1,2-di-arachidonoyl-glycerol (AAG), and (e) the hydrolysis of AAG to 2-AG. From these findings it is possible to suggest that AAPC may serve as precursor for both AnNH and 2-AG biosynthesis through three different pathways.

    Topics: Animals; Arachidonic Acids; Cannabinoids; Endocannabinoids; Glycerides; Mice; Neuroblastoma; Polyunsaturated Alkamides; Tritium; Tumor Cells, Cultured

1996
2-Arachidonoylglycerol, a putative endogenous cannabinoid receptor ligand, induces rapid, transient elevation of intracellular free Ca2+ in neuroblastoma x glioma hybrid NG108-15 cells.
    Biochemical and biophysical research communications, 1996, Dec-04, Volume: 229, Issue:1

    Low concentrations of 2-arachidonoylglycerol were found to induce rapid, transient elevation of intracellular free Ca2+ in NG108-15 cells (EC50 was 150 nM). Free arachidonic acid, 2-palmitoylglycerol, 2-oleoylglycerol, 2-linoleoylglycerol and 2-docosahexaenoylglycerol were inactive. Anandamide acted as a partial agonist. Importantly, desensitization was observed upon sequential challenge with 2-arachidonoylglycerol. Furthermore, cross-desensitization was observed between 2-arachidonoylglycerol and WIN 55212-2, a cannabinoid receptor agonist. Pretreatment of the cells with SR141716A, a cannabinoid receptor antagonist, abolished the activities of both 2-arachidonoylglycerol and WIN 55212-2. These results strongly suggest that 2-arachidonoylglycerol and WIN 55212-2 bind to a common cannabinoid receptor to elicit cellular responses and that 2-arachidonoylglycerol has some physiological role in nervous tissues.

    Topics: Arachidonic Acids; Benzoxazines; Calcium; Cannabinoids; Dose-Response Relationship, Drug; Drug Interactions; Endocannabinoids; Glioma; Glycerides; Hybrid Cells; Ligands; Morpholines; Naphthalenes; Neuroblastoma; Neurons; Piperidines; Platelet Activating Factor; Polyunsaturated Alkamides; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant

1996
Stimulation of anandamide biosynthesis in N-18TG2 neuroblastoma cells by delta 9-tetrahydrocannabinol (THC).
    Biochemical pharmacology, 1995, Mar-15, Volume: 49, Issue:6

    A concentration-related stimulation of anandamide (arachidonylethanolamide) synthesis by delta 9-tetrahydrocannabinol (THC) was observed in N-18TG2 neuroblastoma cells. Anandamide was detected and measured using an approach in which [3H]arachidonic acid and [14C]ethanolamine were incorporated into the phospholipids of subconfluent monolayers of cells, and the radiolabeled products were analyzed by TLC following agonist exposure. Both precursors showed similar concentration-response relationships and time dependencies consistent with the production of a product containing both the ethanolamine and arachidonyl moieties. The radiolabeled product also migrated together with authentic anandamide on two-dimensional TLC, confirming its identity as arachidonylethanolamide. Approximately two-thirds of the observed synthesis could be inhibited by 1 microM wortmannin, an agent previously reported to inhibit THC-stimulated arachidonic acid release. These findings are in agreement with reports showing that THC can mobilize phospholipid bound arachidonic acid, leading to the production of other eicosanoids.

    Topics: Arachidonic Acid; Arachidonic Acids; Chromatography, Thin Layer; Dronabinol; Endocannabinoids; Ethanolamine; Ethanolamines; Neuroblastoma; Polyunsaturated Alkamides; Tumor Cells, Cultured

1995
Two novel classes of neuroactive fatty acid amides are substrates for mouse neuroblastoma 'anandamide amidohydrolase'.
    FEBS letters, 1995, Dec-11, Volume: 377, Issue:1

    The endogenous cannabimimetic substance, anandamide (N-arachidonoyl-ethanolamine) and the recently isolated sleep-inducing factor, oleoyl-amide (cis-9,10-octadecenoamide), belong to two neuroactive fatty acid amide classes whose action in mammals has been shown to be controlled by enzymatic amide bond hydrolysis. Here we report the partial characterisation and purification of 'anandamide amidohydrolase' from membrane fractions of N18 neuroblastoma cells, and provide evidence for a further and previously unsuspected role of this enzyme. An enzymatic activity catalysing the hydrolysis of [14C]anandamide was found in both microsomal and 10,000 x g pellet fractions. The latter fractions, which displayed the highest Vmax for anandamide, were used for further characterisation of the enzyme, and were found to catalyse the hydrolysis also of [14C]oleoyl-amide, with an apparent Km of 9.0 +/- 2.2 microM. [14C]anandamide- and [14C]oleoyl-amide-hydrolysing activities: (i) exhibited identical pH- and temperature-dependency profiles; (ii) were inhibited by alkylating agents; (iii) were competitively inhibited by the phospholipase A2 inhibitor arachidonyl-trifluoromethyl-ketone with the same IC50 (3 microM); (iv) were competitively inhibited by both anandamide (or other polyunsaturated fatty acid-ethanolamides) and oleoyl-amide. Proteins solubilised from 10,000 x g pellets were directly analysed by isoelectric focusing, yielding purified fractions capable of catalysing the hydrolysis of both [14C]anandamide and [14C]oleoyl-amide. These data suggest that 'anandamide amidohydrolase' enzymes, such as that characterised in this study, may be used by neuronal cells also to hydrolyse the novel sleep-inducing factor oleoyl-amide.

    Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Binding, Competitive; Endocannabinoids; Enzyme Stability; Fatty Acids; Hot Temperature; Hydrogen-Ion Concentration; Hydrolysis; Mice; Neuroblastoma; Oleic Acid; Oleic Acids; Polyunsaturated Alkamides; Substrate Specificity; Tumor Cells, Cultured

1995
Anandamide, an endogenous cannabinoid, inhibits calcium currents as a partial agonist in N18 neuroblastoma cells.
    Molecular pharmacology, 1993, Volume: 44, Issue:3

    Anandamide (arachidonyl ethanolamide) has been identified as an endogenous ligand of cannabinoid receptors on the basis of its ability to displace 3H-labeled synthetic cannabinoid in a binding assay. One well characterized cellular action of cannabinoids is inhibition of hormonally stimulated adenylyl cyclase. Another action of synthetic cannabinoids is potent, stereospecific, and reversible inhibition of N-type calcium currents (ICa) in the NG108-15 neuroblastoma-glioma cell line via a pertussis toxin (PTX)-sensitive pathway, independently of cAMP metabolism. Here we used the N18 neuroblastoma cell line and the whole-cell voltage-clamp technique to show that anandamide also potently inhibits N-type ICa in a PTX-sensitive fashion. As with the cannabinomimetic aminoalkylindole WIN 55,212-2, inhibition by anandamide was voltage dependent and N-ethylmaleimide sensitive. However, anandamide was less efficacious than either WIN 55,212-2 or the nonclassical cannabinoid CP 55,940. Indeed, anandamide appears to act as a partial agonist at the cannabinoid receptor. Application of WIN 55,212-2 always caused further inhibition of ICa in cells exposed to a maximally effective concentration of anandamide, and application of anandamide always caused a partial recovery of ICa in cells exposed to a maximally effective concentration of WIN 55,212-2. This partial agonist property of anandamide suggests that, although anandamide inhibits N-type ICa via a PTX-sensitive G protein, its action as a neuromodulator in the intact animal may be more complex than would be inferred by extrapolating the results of in vivo studies with (-)-delta 9-tetra-hydrocannabinol or synthetic cannabinoids.

    Topics: Adenylate Cyclase Toxin; Amides; Arachidonic Acids; Benzoxazines; Calcium Channel Blockers; Endocannabinoids; Fatty Acids, Unsaturated; GTP-Binding Proteins; Ion Channel Gating; Membrane Potentials; Morpholines; Naphthalenes; Neuroblastoma; Neurons; Pertussis Toxin; Polyunsaturated Alkamides; Receptors, Cannabinoid; Receptors, Drug; Tumor Cells, Cultured; Virulence Factors, Bordetella

1993
Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist.
    Biochemical pharmacology, 1993, Sep-01, Volume: 46, Issue:5

    Enzymatic activities have been identified which catalyze both the hydrolysis and synthesis of arachidonylethanolamide (anandamide). Anandamide was taken up by neuroblastoma and glioma cells in culture, but it did not accumulate since it was rapidly degraded by an amidase activity that resided mainly in the membrane fractions. This amidase activity was expressed in brain and the majority of cells and tissues tested. Phenylmethylsulfonyl fluoride (PMSF) was found to be a potent inhibitor of this amidase. A catalytic activity for the biosynthesis of anandamide from ethanolamine and arachidonic acid was readily apparent in incubations of rat brain homogenates. The stability of anandamide in serum and its rapid breakdown in cells and tissues are consistent with the observation that it is active when administered systemically, and its duration of action will be regulated by its rate of degradation in cells.

    Topics: Amides; Animals; Arachidonic Acid; Arachidonic Acids; Brain Chemistry; Cell Line; Endocannabinoids; Ethanolamines; Fatty Acids, Unsaturated; Glioma; Neuroblastoma; Phenylmethylsulfonyl Fluoride; Polyunsaturated Alkamides; Rats; Receptors, Cannabinoid; Receptors, Drug; Subcellular Fractions; Tumor Cells, Cultured

1993