anandamide and Nausea

anandamide has been researched along with Nausea* in 6 studies

Reviews

1 review(s) available for anandamide and Nausea

ArticleYear
[Cannabinoids in the control of pain].
    Recenti progressi in medicina, 2008, Volume: 99, Issue:12

    Hemp (Cannabis sativa L.) has been used since remotes ages as a herbal remedy. Only recently the medical community highlighted the pharmacological scientific bases of its effects. The most important active principle, Delta-9-tetrahydrocannabinol, was identified in the second half of the last century, and subsequently two receptors were identified and cloned: CB1 that is primarily present in the central nervous system, and CB2 that is present on the cells of the immune system. Endogenous ligands, called endocannabinoids, were characterized. The anandamide was the first one to be discovered. The effectiveness of the cannabinoids in the treatment of nausea and vomit due to anti-neoplastic chemotherapy and in the wasting-syndrome during AIDS is recognized. Moreover, the cannabinoids are analgesic, and their activity is comparable to the weak opioids. Furthermore, parallels exist between opioid and cannabinoid receptors, and evidence is accumulating that the two systems sometimes may operate synergistically. The interest of the pharmaceutical companies led to the production of various drugs, whether synthetic or natural derived. The good ratio between the polyunsatured fatty acids omega-3 and omega-6 of the oil of Cannabis seeds led to reduction of the phlogosis and an improvement of the pain symptoms in patients with chronic musculo-skeletal inflammation.

    Topics: Amino Acid Sequence; Analgesics, Non-Narcotic; Anti-Inflammatory Agents, Non-Steroidal; Antiemetics; Arachidonic Acids; Cachexia; Cannabinoids; Cannabis; Dronabinol; Endocannabinoids; Humans; Molecular Sequence Data; Nausea; Pain; Phytotherapy; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2

2008

Other Studies

5 other study(ies) available for anandamide and Nausea

ArticleYear
Elevation of 2-AG by monoacylglycerol lipase inhibition in the visceral insular cortex interferes with anticipatory nausea in a rat model.
    Behavioral neuroscience, 2016, Volume: 130, Issue:2

    Anticipatory nausea (AN) is a conditioned nausea reaction experienced by chemotherapy patients upon returning to the clinic. Currently, there are no specific treatments for this phenomenon, with the classic antiemetic treatments (e.g., ondansetron) providing no relief. The rat model of AN, contextually elicited conditioned gaping reactions in rats, provides a tool for assessing potential treatments for this difficult to treat disorder. Systemically administered drugs which elevate the endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), by interfering with their respective degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacyl glycerol lipase (MAGL) interfere with AN in the rat model. We have shown that MAGL inhibition within the visceral insular cortex (VIC) interferes with acute nausea in the gaping model (Sticht et al., 2015). Here we report that bilateral infusion of the MAGL inhibitor, MJN110 (but neither the FAAH inhibitor, PF3845, nor ondansetron) into the VIC suppressed contextually elicited conditioned gaping, and this effect was reversed by coadministration of the CB1 antagonist, AM251. These findings suggest that 2-AG within the VIC plays a critical role in the regulation of both acute nausea and AN. Because there are currently no specific therapeutics for chemotherapy patients that develop anticipatory nausea, MAGL inhibition by MJN110 may be a candidate treatment. (PsycINFO Database Record

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Cerebral Cortex; Endocannabinoids; Glycerides; Lithium Chloride; Models, Animal; Monoacylglycerol Lipases; Nausea; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Serotonin; Vomiting, Anticipatory

2016
Intra-visceral insular cortex 2-arachidonoylglycerol, but not N-arachidonoylethanolamide, suppresses acute nausea-induced conditioned gaping in rats.
    Neuroscience, 2015, Feb-12, Volume: 286

    The visceral insular cortex (VIC) has previously been shown to play a critical role during acute nausea-induced conditioned gaping in rats. Specifically, localized administration of the conventional anti-emetic, ondansetron or the synthetic cannabinoid, HU210, interferes with the establishment of conditioned gaping, likely by reducing the effects of an illness-inducing treatment. However the precise role of the VIC in endocannabinoid-suppression of nausea remains unknown; thus we investigated the potential of localized intra-VIC endocannabinoid administration to interfere with acute nausea-induced conditioned gaping behavior in male Sprague-Dawley rats. Animals received an intraoral infusion of saccharin (0.1%) followed by intra-VIC exogenous N-arachidonoylethanolamide (AEA; 0.4, 4 μg) or 2-arachidonoylglycerol (2-AG; 0.5, 1 μg), and were subsequently injected with nausea-inducing LiCl (0.15M) 15 min later. Bilateral intra-VIC infusions of 2-AG (1 μg, but not 0.5 μg) dose-dependently suppressed conditioned gaping, whereas exogenous AEA was without effect. Interestingly, 2-AG reduced conditioned gaping despite additional pretreatment with the selective cannabinoid receptor type 1 (CB1) antagonist, AM-251; however, concomitant pretreatment with the cyclooxygenase inhibitor, indomethacin (0.5 μg), blocked the suppressive effects of intra-VIC 2-AG. These findings suggest that the modulatory role of the endocannabinoid system during nausea is driven largely by the endocannabinoid, 2-AG, and that its anti-nausea effects may be partly independent of CB1-receptor signaling through metabolic products of the endocannabinoid system.

    Topics: Animals; Antiemetics; Arachidonic Acids; Cannabinoid Receptor Agonists; Cerebral Cortex; Endocannabinoids; Glycerides; Lithium Chloride; Male; Nausea; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley

2015
Attenuation of anticipatory nausea in a rat model of contextually elicited conditioned gaping by enhancement of the endocannabinoid system.
    Psychopharmacology, 2014, Volume: 231, Issue:3

    Enhancement of the endocannabinoid (EC) system may reduce anticipatory nausea (AN).. The experiments evaluated the potential of the dual fatty acid amide hydrolase (FAAH)/monoacylglycerol lipase (MAGL) inhibitor, JZL195, on its own and combined with anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) to reduce contextually elicited gaping, a measure of AN in rats.. Following four context lithium chloride (LiCl) pairings, rats were injected with vehicle (VEH) or JZL195 (10 mg kg(-1), intraperitoneally) 105 min before an injection of VEH, 2-AG (1.25 mg kg(-1)), or AEA (5.0 mg kg(-1)). Fifteen minutes later, all rats were placed in the LiCl-paired context for 5 min and in a different context for a 15-min locomotor test. Whole brains were extracted for EC analysis. The potential of the CB1 antagonist, SR141716, to reverse the suppression of AN by both JZL195 and AEA and of the CB2 antagonist, AM630, to reverse the suppression of AN by JZL195 was then evaluated.. JZL195 suppressed gaping and elevated AEA, palmitoylethanolamine, and oleoylethanolamide. As the suppression of gaping was reversed by SR141716, but not by AM630, the effect was CB1 mediated. The suppressive effect of JZL195 on gaping, as well as elevation of AEA and 2-AG, was amplified by pretreatment with either AEA or 2-AG. On its own, AEA, but not 2-AG, also suppressed gaping-an effect that was also prevented by CB1 antagonism.. JZL195 reduces AN primarily by acting as a FAAH inhibitor, but MAGL inhibition is also indicated.

    Topics: Amidohydrolases; Animals; Anticipation, Psychological; Arachidonic Acids; Brain; Cannabinoid Receptor Antagonists; Carbamates; Endocannabinoids; Enzyme Inhibitors; Glycerides; Indoles; Lithium Chloride; Male; Monoacylglycerol Lipases; Motor Activity; Nausea; Oleic Acids; Piperazines; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant

2014
Anandamide transport inhibition by ARN272 attenuates nausea-induced behaviour in rats, and vomiting in shrews (Suncus murinus).
    British journal of pharmacology, 2013, Volume: 170, Issue:5

    To understand how anandamide transport inhibition impacts the regulation of nausea and vomiting and the receptor level mechanism of action involved. In light of recent characterization of an anandamide transporter, fatty acid amide hydrolase-1-like anandamide transporter, to provide behavioural support for anandamide cellular reuptake as a facilitated transport process.. The systemic administration of the anandamide transport inhibitor ARN272 ([(4-(5-(4-hydroxy-phenyl)-3,4-diaza-bicyclo[4.4.0]deca-1(6),2,4,7,9-pentaen-2-ylamino)-phenyl)-phenylamino-methanone]) was used to evaluate the prevention of LiCl-induced nausea-induced behaviour (conditioned gaping) in rats, and LiCl-induced emesis in shrews (Suncus murinus). The mechanism of how prolonging anandamide availability acts to regulate nausea in rats was explored by the antagonism of cannabinoid 1 (CB1) receptors with the systemic co-administration of SR141716.. The systemic administration of ARN272 produced a dose-dependent suppression of nausea-induced conditioned gaping in rats, and produced a dose-dependent reduction of vomiting in shrews. The systemic co-administration of SR141716 with ARN272 (at 3.0 mg·kg(-1)) in rats produced a complete reversal of ARN272-suppressed gaping at 1.0 mg·kg(-1). SR141716 alone did not differ from the vehicle solution.. These results suggest that anandamide transport inhibition by the compound ARN272 tonically activates CB1 receptors and as such produces a type of indirect agonism to regulate toxin-induced nausea and vomiting. The results also provide behavioural evidence in support of a facilitated transport mechanism used in the cellular reuptake of anandamide.

    Topics: Amidohydrolases; Animals; Antiemetics; Arachidonic Acids; Behavior, Animal; Biological Transport; Cannabinoid Receptor Antagonists; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Isoenzymes; Lithium Chloride; Male; Nausea; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Rimonabant; Shrews; Vomiting

2013
Effects of the FAAH inhibitor, URB597, and anandamide on lithium-induced taste reactivity responses: a measure of nausea in the rat.
    Psychopharmacology, 2007, Volume: 190, Issue:2

    The endogenous cannabinoid system plays a vital role in the control of nausea and emesis. Because of the rapid breakdown and hydrolysis of endocannabinoids, such as anandamide, the therapeutic effects may be enhanced by prolonging their duration of action.. The present experiment evaluated the potential of various doses of URB597, a fatty acid amide hydrolase (FAAH) inhibitor, alone and in combination with systemic administration of anandamide to modulate the establishment of lithium-induced conditioned taste reactivity responses in rats.. In experiment 1, on the conditioning day, rats first received an injection of 0.3 mg/kg URB597, 0.15 mg/kg URB597, or vehicle and then received a second injection of anandamide (5 mg/kg) or vehicle, before a 3-min exposure of 0.1% saccharin by intraoral infusion. Immediately after the saccharin exposure, the rats were injected with lithium chloride. On each of three test days, rats received a 3-min intraoral infusion of saccharin solution, and the taste reactivity responses were videotaped and monitored. In experiment 2, the effects of pretreatment with the CB(1) antagonist, AM-251, on URB597 and anandamide-induced suppressed aversion was evaluated.. Administration of URB597 alone and in combination with anandamide reduced active rejection reactions elicited by a LiCl-paired saccharin solution; both effects were reversed by pretreatment with AM-251, suggesting that they were CB(1) receptor mediated.. The results suggest that prolonging the action of anandamide by pretreatment with the FAAH inhibitor, URB597, suppresses lithium-induced nausea in the rat.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Association Learning; Avoidance Learning; Benzamides; Carbamates; Conditioning, Classical; Dose-Response Relationship, Drug; Endocannabinoids; Injections, Intraperitoneal; Lithium Chloride; Male; Nausea; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Long-Evans; Receptor, Cannabinoid, CB1; Vomiting

2007