anandamide has been researched along with Movement-Disorders* in 4 studies
1 review(s) available for anandamide and Movement-Disorders
Article | Year |
---|---|
The endocannabinoid nervous system: unique opportunities for therapeutic intervention.
The active principle in marijuana, Delta(9)-tetrahydrocannabinol (THC), has been shown to have wide therapeutic application for a number of important medical conditions, including pain, anxiety, glaucoma, nausea, emesis, muscle spasms, and wasting diseases. Delta(9)-THC binds to and activates two known cannabinoid receptors found in mammalian tissue, CB1 and CB2. The development of cannabinoid-based therapeutics has focused predominantly on the CB1 receptor, based on its predominant and abundant localization in the CNS. Like most of the known cannabinoid agonists, Delta(9)-THC is lipophilic and relatively nonselective for both receptor subtypes. Clinical studies show that nonselective cannabinoid agonists are relatively safe and provide therapeutic efficacy, but that they also induce psychotropic side effects. Recent studies of the biosynthesis, release, transport, and disposition of anandamide are beginning to provide an understanding of the role of lipid transmitters in the CNS. This review attempts to link current understanding of the basic biology of the endocannabinoid nervous system to novel opportunities for therapeutic intervention. This new knowledge may facilitate the development of cannabinoid receptor-targeted therapeutics with improved safety and efficacy profiles. Topics: Amidohydrolases; Analgesics; Animals; Anti-Anxiety Agents; Antiemetics; Appetite Stimulants; Arachidonic Acids; Brain Chemistry; Cannabinoid Receptor Modulators; Cannabinoids; Endocannabinoids; Glaucoma; Humans; Movement Disorders; Neuroprotective Agents; Polyunsaturated Alkamides; Receptors, Cannabinoid; Receptors, Drug; Signal Transduction | 2001 |
3 other study(ies) available for anandamide and Movement-Disorders
Article | Year |
---|---|
Cannabinoid receptor subtypes 1 and 2 mediate long-lasting neuroprotection and improve motor behavior deficits after transient focal cerebral ischemia.
The endocannabinoid system is crucially involved in the regulation of brain activity and inflammation. We have investigated the localization of cannabinoid CB1 and CB2 receptors in adult rat brains before and after focal cerebral ischemia due to endothelin-induced transient occlusion of the middle cerebral artery (eMCAO). Using immunohistochemistry, both receptor subtypes were identified in cortical neurons. After eMCAO, neuronal cell death was accompanied by reduced neuronal CB1 and CB2 receptor-linked immunofluorescence. In parallel, CB1 receptor was found in activated microglia/macrophages 3 days post eMCAO and in astroglia cells at days 3 and 7. CB2 receptor labeling was identified in activated microglia/macrophages or astroglia 3 and 7d ays post ischemia, respectively. In addition, immune competent CD45-positive cells were characterized by pronounced CB2 receptor staining 3 and 7 days post eMCAO. KN38-72717, a potent and selective CB1 and CB2 receptor agonist, revealed a significant, dose-dependent and long-lasting reduction of cortical lesion sizes due to eMCAO, when applied consecutively before, during and after eMCAO. In addition, severe motor deficits of animals suffering from eMCAO were significantly improved by KN38-7271. KN38-7271 remained effective, even if its application was delayed up to 6h post eMCAO. Finally, we show that the endocannabinoid system assembles a comprehensive machinery to defend the brain against the devastating consequences of cerebral ischemia. In summary, this study underlines the therapeutic potential of CB1 and/or CB2 receptor agonists against neurodegenerative diseases or injuries involving acute or chronic imbalances of cerebral blood flow and energy consumption. Topics: Animals; Arachidonic Acids; Brain; Brain Infarction; Cannabinoids; Disease Models, Animal; Dose-Response Relationship, Drug; Ectodysplasins; Endocannabinoids; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Indans; Infarction, Middle Cerebral Artery; Leukocyte Common Antigens; Male; Movement Disorders; Neuroprotective Agents; Polyunsaturated Alkamides; Psychomotor Performance; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Sulfonic Acids; Time Factors | 2012 |
UCM707, an inhibitor of the anandamide uptake, behaves as a symptom control agent in models of Huntington's disease and multiple sclerosis, but fails to delay/arrest the progression of different motor-related disorders.
To date, UCM707, (5Z,8Z,11Z,14Z)-N-(3-furylmethyl)eicosa-5,8,11,14-tetraenamide, has the highest potency and selectivity in vitro and in vivo as inhibitor of the endocannabinoid uptake. This may enable this compound to potentiate endocannabinoid transmission, with minimal side effects, in the treatment of several neurological disorders. In the present study, we examined whether the treatment with UCM707 produced beneficial effects, as other cannabinoid-related compounds have already shown, to alleviate motor deterioration or to delay/arrest neurodegeneration, in several models of neurological diseases such as Huntington's disease (HD), Parkinson's disease (PD) and multiple sclerosis (MS). UCM707 exhibited a notable anti-hyperkinetic activity in a rat model of HD generated by bilateral intrastriatal application of 3-nitropropionic acid. This effect was possibly associated with an amelioration of GABA and glutamate deficits induced by the toxin in the globus pallidus and the substantia nigra, respectively. However, UCM707 did not protect against the death of GABAergic neurons that occurs in rats with striatal atrophy generated by unilateral application of malonate, another animal model of HD, which is more useful to test neuroprotective strategies. In addition, UCM707 did not provide neuroprotection in rats with unilateral lesions of the nigrostriatal dopaminergic neurons caused by 6-hydroxydopamine, a rat model of PD. This was possibly due to the fact that UCM707 is devoid of anti-oxidant properties since another uptake inhibitor, AM404, that has these properties acted as a protective agent. Lastly, UCM707 was also unable to inhibit the development of the neurological impairment of rats with experimental autoimmune encephalomyelitis (EAE), an acute model of MS. However, UCM707, like other endocannabinoid uptake inhibitors reported previously, significantly reduced spasticity of the hindlimbs in a chronic relapsing EAE mice, a chronic model of MS. In summary, UCM707 might be a promising compound in HD to alleviate motor symptoms, which represents an important goal considering the current lack of efficient pharmacological treatments in this basal ganglia disorder. However, the compound was unable to delay neurodegeneration in this disorder and also in PD. In addition, UCM707 did not produce any neurological recovery from inflammatory attack in an EAE rat model of MS, although it retained the classic anti-spastic action shown by other uptake inhibitors in the Topics: 3,4-Dihydroxyphenylacetic Acid; Analysis of Variance; Animals; Arachidonic Acids; Brain Chemistry; Disease Models, Animal; Disease Progression; Dopamine; Dose-Response Relationship, Drug; Drug Interactions; Electrochemistry; Encephalomyelitis, Autoimmune, Experimental; Endocannabinoids; Exploratory Behavior; Furans; gamma-Aminobutyric Acid; Glutamate Decarboxylase; Glutamic Acid; Huntington Disease; Male; Malonates; Movement Disorders; Multiple Sclerosis; Nitro Compounds; Oxidopamine; Polyunsaturated Alkamides; Propionates; Rats; Rats, Sprague-Dawley; Time Factors; Tyrosine 3-Monooxygenase | 2006 |
A role for endocannabinoids in viral-induced dyskinetic and convulsive phenomena.
Dyskinesias and seizures are both medically refractory disorders for which cannabinoid-based treatments have shown early promise as primary or adjunctive therapy. Using the Borna disease (BD) virus rat, an animal model of viral encephalopathy with spontaneous hyperkinetic movements and seizure susceptibility, we identified a key role for endocannabinoids in the maintenance of a balanced tone of activity in extrapyramidal and limbic circuits. BD rats showed significant elevations of the endocannabinoid anandamide in subthalamic nucleus, a relay nucleus compromised in hyperkinetic disorders. While direct and indirect cannabinoid agonists had limited motor effects in BD rats, abrupt reductions of endocannabinoid tone by the CB1 antagonist SR141716A (0.3 mg/kg, i.p.) caused seizures characterized by myoclonic jerks time-locked to periodic spike/sharp wave discharges on hippocampal electroencephalography. The general opiate antagonist naloxone (NLX) (1 mg/kg, s.c.), another pharmacologic treatment with potential efficacy in dyskinesias or L-DOPA motor complications, produced similar seizures. No changes in anandamide levels in hippocampus and amygdala were found in convulsing NLX-treated BD rats. In contrast, NLX significantly increased anandamide levels in the same areas of normal uninfected animals, possibly protecting against seizures. Pretreatment with the anandamide transport blocker AM404 (20 mg/kg, i.p.) prevented NLX-induced seizures. These findings are consistent with an anticonvulsant role for endocannabinoids, counteracting aberrant firing produced by convulsive agents, and with a functional or reciprocal relation between opioid and cannabinoid tone with respect to limbic convulsive phenomena. Topics: Animals; Anticonvulsants; Arachidonic Acids; Basal Ganglia; Borna Disease; Cannabinoid Receptor Modulators; Convulsants; Disease Models, Animal; Endocannabinoids; Limbic System; Male; Movement Disorders; Naloxone; Narcotic Antagonists; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Inbred Lew; Receptor, Cannabinoid, CB1; Rimonabant; Seizures | 2005 |