anandamide has been researched along with Migraine-Disorders* in 8 studies
1 review(s) available for anandamide and Migraine-Disorders
Article | Year |
---|---|
The endocannabinoid system and migraine.
The recently discovered endocannabinoid system (ECS), which includes endocannabinoids and the proteins that metabolize and bind them, has been implicated in multiple regulatory functions both in health and disease. Several studies have suggested that ECS is centrally and peripherally involved in the processing of pain signals. This finding is corroborated by the evidence that endocannabinoids inhibit, through a cannabinoid type-1 receptor (CB1R)-dependent retrograde mechanism, the release of neurotransmitters controlling nociceptive inputs and that the levels of these lipids are high in those regions (such as sensory terminals, skin, dorsal root ganglia) known to be involved in transmission and modulation of pain signals. In this review we shall describe experimental and clinical data that, intriguingly, demonstrate the link between endocannabinoids and migraine, a neurovascular disorder characterized by recurrent episodic headaches and caused by abnormal processing of sensory information due to peripheral and/or central sensitization. Although the exact ECS-dependent mechanisms underlying migraine are not fully understood, the available results strongly suggest that activation of ECS could represent a promising therapeutical tool for reducing both the physiological and inflammatory components of pain that are likely involved in migraine attacks. Topics: Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Endocannabinoids; Humans; Migraine Disorders; Neurons; Polyunsaturated Alkamides; Receptors, Cannabinoid; Trigeminal Caudal Nucleus | 2010 |
7 other study(ies) available for anandamide and Migraine-Disorders
Article | Year |
---|---|
Plasma levels of the endocannabinoid anandamide, related N-acylethanolamines and linoleic acid-derived oxylipins in patients with migraine.
There is evidence that patients with migraine have deficient levels of the endogenous cannabinoid receptor ligand anandamide (AEA). It is not known, however, if this is a localised or generalised phenomenon. In the present study, levels of AEA, related N-acylethanolamines (NAEs) and linoleic acid-derived oxylipins have been measured in the blood of 26 healthy women and 38 women with migraine (26 with aura, 12 without aura) who were matched for age and body-mass index. Blood samples were taken on two occasions: the first sample near the start of the menstrual cycle (when present) and the second approximately fourteen days later. For a subset of migraine patients, two additional blood samples were taken, one during a migraine attack and one approximately 1 month later (to be at the same stage in the menstrual cycle, when present). NAEs and oxylipins were measured by liquid chromatography coupled to mass spectrometry. Twenty-nine lipids were quantified, of which 16 were found to have a high reproducibility of measurement. There were no significant differences in the levels of AEA, the related NAEs stearoylethanolamide and oleoylethanolamide or any of the nine linoleic acid-derived oxylipins measured either between migraine patients with vs. without aura, or between controls and migraine patients (after stratification to take into account whether or not the individuals had regular menstruation cycles) in either of the first two samples. Levels of linoleoylethanolamide were lower in the patients with vs. without aura on the second sample but not in the first sample, but the biological importance of this finding is unclear. Due to time-dependent increases in their concentrations ex vivo prior to centrifugation, AEA and oleoylethanolamide levels in the samples collected during migraine attacks were not analysed, but for the other fourteen lipids, there were no significant differences in plasma concentrations during migraine vs. one month later. It is concluded that migraine is not associated with a generalised (as opposed to localised) deficiency in these lipids. Topics: Adolescent; Adult; Arachidonic Acids; Endocannabinoids; Ethanolamines; Female; Humans; Linoleic Acid; Middle Aged; Migraine Disorders; Oxylipins; Polyunsaturated Alkamides; Young Adult | 2017 |
The modulatory effect of anandamide on nitroglycerin-induced sensitization in the trigeminal system of the rat.
One of the human and animal models of migraine is the systemic administration of the nitric oxide donor (NO) nitroglycerin (NTG). NO can provoke migraine-like attacks in migraineurs and initiates a self-amplifying process in the trigeminal system, probably leading to central sensitization. Recent studies suggest that the endocannabinoid system is involved in nociceptive signal processing and cannabinoid receptor (CB) agonists are able to attenuate nociception in animal models of pain.. The purpose of the present study was to investigate the modulatory effects of a CB agonist anandamide (AEA) on the NTG-induced expression of transient receptor potential vanilloid type 1 (TRPV1), neuronal nitric oxide synthase (nNOS), nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX-2) and kynurenine aminotransferase-II (KAT-II) in the upper cervical spinal cord (C1-C2) of the rat, where most of the trigeminal nociceptive afferents convey.. A half hour before and one hour after NTG (10 mg/kg) or placebo injection, adult male Sprague-Dawley rats (n = 44) were treated with AEA (2 × 5 mg/kg). Four hours after placebo/NTG injection, the animals were perfused and the cervical spinal cords were removed for immunohistochemistry and Western blotting.. Our results show that NTG is able to increase TRPV1, nNOS, NF-κB and COX-2 and decrease KAT-II expression in the C1-C2 segments. On the other hand, we have found that AEA modulates the NTG-induced changes, thus it influences the activation and central sensitization process in the trigeminal system, probably via CBs. Topics: Afferent Pathways; Animals; Arachidonic Acids; Blotting, Western; Cannabinoid Receptor Agonists; Central Nervous System Sensitization; Cervical Vertebrae; Disease Models, Animal; Endocannabinoids; Immunohistochemistry; Male; Migraine Disorders; Nitric Oxide Donors; Nitroglycerin; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Trigeminal Nerve | 2016 |
Inhibition of FAAH reduces nitroglycerin-induced migraine-like pain and trigeminal neuronal hyperactivity in mice.
There is evidence to suggest that a dysregulation of endocannabinoid signaling may contribute to the etiology and pathophysiology of migraine. Thus, patients suffering from chronic migraine or medication overuse headache showed alterations in the activity of the arachidonoylethanolamide (AEA) degrading enzyme fatty acid amide hydrolase (FAAH) and a specific AEA membrane transporter, alongside with changes in AEA levels. The precise role of different endocannabinoid system components is, however, not clear. We have therefore investigated mice with a genetic deletion of the two main cannabinoid receptors CB1 and CB2, or the main endocannabinoid degrading enzymes, FAAH and monoacylglycerol lipase (MAGL), which degrades 2-arachidonoylglycerol (2-AG), in a nitroglycerine-induced animal model of migraine. We found that nitroglycerin-induced mechanical allodynia and neuronal activation of the trigeminal nucleus were completely abolished in FAAH-deficient mice. To validate these results, we used two structurally different FAAH inhibitors, URB597 and PF3945. Both inhibitors also dose-dependently blocked nitroglycerin-induced hyperalgesia and the activation of trigeminal neurons. The effects of the genetic deletion of pharmacological blockade of FAAH are mediated by CB1 receptors, because they were completely disrupted with the CB1 antagonist rimonabant. These results identify FAAH as a target for migraine pharmacotherapy. Topics: Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Benzamides; Cannabinoid Receptor Antagonists; Carbamates; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Hyperalgesia; Male; Mice, Inbred C57BL; Mice, Knockout; Migraine Disorders; Monoacylglycerol Lipases; Nitroglycerin; Pain Measurement; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Touch; Trigeminal Nuclei | 2015 |
Effects of anandamide in migraine: data from an animal model.
Systemic nitroglycerin (NTG) produces spontaneous-like migraine attacks in migraine sufferers and induces a condition of hyperalgesia in the rat 4 h after its administration. Endocannabinoid system seems to be involved in the modulation of NTG-induced hyperalgesia, and probably, in the pathophysiological mechanisms of migraine. In this study, the analgesic effect of anandamide (AEA) was evaluated by means of the formalin test, performed in baseline conditions and following NTG-induced hyperalgesia in male Sprague-Dawley rats. AEA was administered 30 min before the formalin injection. In addition, the effect of AEA (administered 30 min before NTG injection) was investigated on NTG-induced Fos expression and evaluated 4 h following NTG injection. AEA induced a significant decrease in the nociceptive behavior during both phases of the formalin test in the animals treated with vehicle, while it abolished NTG-induced hyperalgesia during the phase II. Pre-treatment with AEA significantly reduced the NTG-induced neuronal activation in nucleus trigeminalis caudalis, confirming the results obtained in our previous study, and in area postrema, while the same treatment induced an increase of Fos expression in paraventricular and supraoptic nuclei of the hypothalamus, parabrachial nucleus, and periaqueductal grey. The study confirms that a dysfunction of the endocannabinoid system may contribute to the development of migraine attacks and that a pharmacological modulation of CB receptors can be useful for the treatment of migraine pain. Topics: Analgesics; Animals; Arachidonic Acids; Behavior, Animal; Cannabinoid Receptor Modulators; Disease Models, Animal; Drug Interactions; Endocannabinoids; Male; Migraine Disorders; Nitroglycerin; Pain Measurement; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Time Factors; Treatment Outcome; Vasodilator Agents | 2011 |
Cannabinoid (CB1) receptor activation inhibits trigeminovascular neurons.
Migraine is a common and disabling neurological disorder that involves activation or the perception of activation of the trigeminovascular system. Cannabinoid (CB) receptors are present in brain and have been suggested to be antinociceptive. Here we determined the effect of cannabinoid receptor activation on neurons with trigeminovascular nociceptive input in the rat. Neurons in the trigeminocervical complex (TCC) were studied using extracellular electrophysiological techniques. Responses to both dural electrical stimulation and cutaneous facial receptive field activation of the ophthalmic division of the trigeminal nerve and the effect of cannabinoid agonists and antagonists were studied. Nonselective CB receptor activation with R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2, 3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl) (WIN55,212; 1 mg kg(-1)) inhibited neuronal responses to A-(by 52%) and C-fiber (by 44%) afferents, an effect blocked by the CB(1) receptor antagonist SR141716 [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide; 3 mg kg(-1)] but not the CB2 receptor antagonist AM630 (6-iodopravadoline; 3 mg kg(-1)). Anandamide (10 mg kg(-1)) was able to inhibit both A- and C-fiber-elicited TCC firing, only after transient receptor potential vanilloid 1 receptor inhibition. Activation of cannabinoid receptors had no effect on cutaneous receptive fields when recorded from TCC neurons. The data show that manipulation of CB1 receptors can affect the responses of trigeminal neurons with A- and C-fiber inputs from the dura mater. This may be a direct effect on neurons in the TCC itself or an effect in discrete areas of the brain that innervate these neurons. The data suggest that CB receptors may have therapeutic potential in migraine, cluster headache, or other primary headaches, although the potential hazards of psychoactive side effects that accompany cannabinoid treatments may be complex to overcome. Topics: Animals; Arachidonic Acids; Benzoxazines; Blood Pressure; Capsaicin; Endocannabinoids; Male; Migraine Disorders; Morpholines; Naphthalenes; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; RNA, Messenger; Trigeminal Nerve; TRPV Cation Channels | 2007 |
Endocannabinoids in chronic migraine: CSF findings suggest a system failure.
Based on experimental evidence of the antinociceptive action of endocannabinoids and their role in the modulation of trigeminovascular system activation, we hypothesized that the endocannabinoid system may be dysfunctional in chronic migraine (CM). We examined whether the concentrations of N-arachidonoylethanolamide (anandamide, AEA), palmitoylethanolamide (PEA), and 2-arachidonoylglycerol (2-AG) in the CSF of patients with CM and with probable CM and probable analgesic-overuse headache (PCM+PAOH) are altered compared with control subjects. The above endocannabinoids were measured by high-performance liquid chromatography (HPLC), and quantified by isotope dilution gas-chromatography/mass-spectrometry. Calcitonin gene-related peptide (CGRP) levels were also determined by RIA method and the end products of nitric oxide (NO), the nitrites, by HPLC. CSF concentrations of AEA were significantly lower and those of PEA slightly but significantly higher both in patients with CM and PCM+PAOH than in nonmigraineur controls (p<0.01 and p<0.02, respectively). A negative correlation was found between AEA and CGRP levels in CM and PCM+PAOH patients (r=0.59, p<0.01 and r=-0.65, p<0.007; respectively). A similar trend was observed between this endocannabinoid and nitrite levels. Reduced levels of AEA in the CSF of CM and PCM+PAOH patients may reflect an impairment of the endocannabinoid system in these patients, which may contribute to chronic head pain and seem to be related to increased CGRP and NO production. These findings support the potential role of the cannabinoid (CB)1 receptor as a possible therapeutic target in CM. Topics: Adult; Amides; Arachidonic Acids; Calcitonin Gene-Related Peptide; Cannabinoid Receptor Modulators; Chromatography, High Pressure Liquid; Chronic Disease; Endocannabinoids; Ethanolamines; Female; Gas Chromatography-Mass Spectrometry; Glycerides; Headache Disorders, Secondary; Humans; Male; Migraine Disorders; Nitrites; Palmitic Acids; Polyunsaturated Alkamides; Surveys and Questionnaires | 2007 |
Biochemical changes in endocannabinoid system are expressed in platelets of female but not male migraineurs.
The endogenous cannabinoid anandamide (AEA) plays important roles in modulating pain. Head pain is an almost universal human experience, yet primary headache disorders, such as migraine without aura (MoA) or episodic tension-type headache (ETTH), can represent a serious threat to well-being when frequent and disabling. We assessed the discriminating role of endocannabinoids among patients with ETTH or MoA, and control subjects. We measured the activity of AEA hydrolase and AEA transporter, and the level of cannabinoid receptors in peripheral platelets from MoA, ETTH and healthy controls. Sixty-nine headache patients and 36 controls were selected. Diagnosis of headache type was made according to the International Headache Society criteria. We observed significant sex differences concerning AEA membrane transporter and fatty acid amide hydrolase activity in all groups. An increase in the activity of AEA hydrolase and AEA transporter was found in female but not male migraineurs. Cannabinoid receptors were the same in all groups. Here we show that the endocannabinoid system in human platelets is altered in female but not male migraneurs. Our results suggest that in migraineur women an increased AEA degradation by platelets, and hence a reduced concentration of AEA in blood, might reduce the pain threshold and possibly explain the prevalence of migraine in women. The involvement of the endocannabinoid system in migraine is new and broadens our knowledge of this widespread and multifactorial disease. Topics: Adolescent; Adult; Amidohydrolases; Arachidonic Acids; Blood Platelets; Cannabinoid Receptor Modulators; Endocannabinoids; Female; Humans; Male; Middle Aged; Migraine Disorders; Polyunsaturated Alkamides; Receptors, Cannabinoid; Sex Factors | 2006 |