anandamide and Marijuana-Abuse

anandamide has been researched along with Marijuana-Abuse* in 18 studies

Reviews

6 review(s) available for anandamide and Marijuana-Abuse

ArticleYear
The endocannabinoid system as a target for the treatment of cannabis dependence.
    Neuropharmacology, 2009, Volume: 56 Suppl 1

    The endocannabinoid system modulates neurotransmission at inhibitory and excitatory synapses in brain regions relevant to the regulation of pain, emotion, motivation, and cognition. This signaling system is engaged by the active component of cannabis, Delta9-tetrahydrocannabinol (Delta9-THC), which exerts its pharmacological effects by activation of G protein-coupled type-1 (CB1) and type-2 (CB2) cannabinoid receptors. During frequent cannabis use a series of poorly understood neuroplastic changes occur, which lead to the development of dependence. Abstinence in cannabinoid-dependent individuals elicits withdrawal symptoms that promote relapse into drug use, suggesting that pharmacological strategies aimed at alleviating cannabis withdrawal might prevent relapse and reduce dependence. Cannabinoid replacement therapy and CB1 receptor antagonism are two potential treatments for cannabis dependence that are currently under investigation. However, abuse liability and adverse side-effects may limit the scope of each of these approaches. A potential alternative stems from the recognition that (i) frequent cannabis use may cause an adaptive down-regulation of brain endocannabinoid signaling, and (ii) that genetic traits that favor hyperactivity of the endocannabinoid system in humans may decrease susceptibility to cannabis dependence. These findings suggest in turn that pharmacological agents that elevate brain levels of the endocannabinoid neurotransmitters, anandamide and 2-arachidonoylglycerol (2-AG), might alleviate cannabis withdrawal and dependence. One such agent, the fatty-acid amide hydrolase (FAAH) inhibitor URB597, selectively increases anandamide levels in the brain of rodents and primates. Preclinical studies show that URB597 produces analgesic, anxiolytic-like and antidepressant-like effects in rodents, which are not accompanied by overt signs of abuse liability. In this article, we review evidence suggesting that (i) cannabis influences brain endocannabinoid signaling and (ii) FAAH inhibitors such as URB597 might offer a possible therapeutic avenue for the treatment of cannabis withdrawal.

    Topics: Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Endocannabinoids; Humans; Marijuana Abuse; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1

2009
Behavioral pharmacology of cannabinoids with a focus on preclinical models for studying reinforcing and dependence-producing properties.
    Current drug abuse reviews, 2008, Volume: 1, Issue:3

    Cannabis preparations as recreational drugs are the most widely used illicit drugs in the world. Although cannabis derivatives produce clear subjective motivational responses in humans leading to drug-seeking behavior and in a specific proportion in repeated drug use, the reinforcing/rewarding attributes of these subjective effects are difficult to define in experimental animals. This led to the notion of cannabinoids being considered as "atypical" or "anomalous" drugs of abuse. To this end, our knowledge and understanding of the way cannabis and its main psychoactive constituent, Delta(9)-tetrahydrocannabinol (Delta(9)-THC), act in the central nervous system to exert their reinforcing/rewarding effects is far from complete. The aim of the present article is to review from a preclinical perspective the current status of what is known about the behavioral pharmacology of cannabinoids including the recently identified cannabinoid neurotransmission modifiers with a particular emphasis on their motivational/reinforcing and dependence-producing properties. We conclude that cannabinoids exhibit reinforcing/rewarding properties in experimental animals mostly under particular experimental conditions, which is not the case for other drugs of abuse, such as opiates, psychostimulants, alcohol and nicotine. The paper will discuss these findings critically and also point to open questions that should be addressed in the future in order to improve our understanding of these specific actions of cannabinoids that will also impact drug discovery and development efforts of related compounds as therapeutics in the clinic.

    Topics: Animals; Arachidonic Acids; Brain; Cannabinoids; Conditioning, Classical; Disease Models, Animal; Dose-Response Relationship, Drug; Dronabinol; Drug Administration Schedule; Drug Tolerance; Endocannabinoids; Humans; Macaca mulatta; Marijuana Abuse; Mice; Motivation; Polyunsaturated Alkamides; Rats; Receptor, Cannabinoid, CB1; Reward; Self Administration; Substance Withdrawal Syndrome; Synaptic Transmission

2008
Ligands that target cannabinoid receptors in the brain: from THC to anandamide and beyond.
    Addiction biology, 2008, Volume: 13, Issue:2

    A major finding--that (-)-trans-Delta(9)-tetrahydrocannabinol (Delta(9)-THC) is largely responsible for the psychotropic effects of cannabis--prompted research in the 1970s and 1980s that led to the discovery that this plant cannabinoid acts through at least two types of cannabinoid receptor, CB(1) and CB(2), and that Delta(9)-THC and other compounds that target either or both of these receptors as agonists or antagonists have important therapeutic applications. It also led to the discovery that mammalian tissues can themselves synthesize and release agonists for cannabinoid receptors, the first of these to be discovered being arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol. These 'endocannabinoids' are released onto their receptors in a manner that appears to maintain homeostasis within the central nervous system and sometimes either to oppose or to mediate or exacerbate the unwanted effects of certain disorders. This review provides an overview of the pharmacology of cannabinoid receptors and their ligands. It also describes actual and potential clinical uses both for cannabinoid receptor agonists and antagonists and for compounds that affect the activation of cannabinoid receptors less directly, for example by inhibiting the enzymatic hydrolysis of endocannabinoids following their release.

    Topics: Animals; Arachidonic Acids; Brain; Cannabinoid Receptor Modulators; Cannabinoids; Dronabinol; Endocannabinoids; Glycerides; Humans; Marijuana Abuse; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2

2008
The endogenous cannabinoid system and the treatment of marijuana dependence.
    Neuropharmacology, 2004, Volume: 47 Suppl 1

    The active principle of marijuana, Delta9-tetrahydrocannabinol (Delta9-THC), exerts its pharmacological effects by binding to selective receptors present on the membranes of neurons and other cells. These cannabinoid receptors are normally engaged by a family of lipid mediators, called endocannabinoids, which are thought to participate in the regulation of a diversity of brain functions, including pain, mood, appetite and memory. Marijuana use may lead to adaptive changes in endocannabinoid signaling, and these changes might contribute to effects of marijuana as well as to the establishment of marijuana dependence. In the present article, I outline current views on how endocannabinoid substances are produced, released, and deactivated in the brain. In addition, I review recent progress on the development of pharmacological agents that interfere with endocannabinoid deactivation and discuss their potential utility in the treatment of marijuana dependence and other aspects of drug abuse.

    Topics: Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Endocannabinoids; Glycerides; Humans; Marijuana Abuse; Polyunsaturated Alkamides; Receptors, Cannabinoid

2004
Recent progress in the neurotoxicology of natural drugs associated with dependence or addiction, their endogenous agonists and receptors.
    The Journal of toxicological sciences, 1999, Volume: 24, Issue:1

    Nicotine in tobacco, tetrahydrocannabinol (delta 9-THC) in marijuana and morphine in opium are well known as drugs associated with dependence or addiction. Endogenous active substances that mimic the effects of the natural drugs and their respective receptors have been found in the mammalian central nervous system (CNS). Such active substances and receptors include acetylcholine (ACh) and the nicotinic ACh receptor (nAChR) for nicotine, anandamide and CB1 for delta 9-THC, and endomorphins (1 and 2) and the mu (OP3) opioid receptor for morphine, respectively. Considerable progress has been made in studies on neurotoxicity, in terms of the habituation, dependence and withdrawal phenomena associated with these drugs and with respect to correlations with endogenous active substances and their receptors. In this article we shall review recent findings related to the neurotoxicity of tobacco, marijuana and opium, and their toxic ingredients, nicotine, delta 9-THC and morphine in relation to their respective endogenous agents and receptors in the CNS.

    Topics: Acetylcholine; Arachidonic Acids; Brain Chemistry; Cannabis; Dronabinol; Endocannabinoids; Endorphins; Humans; Marijuana Abuse; Morphine; Morphine Dependence; Nicotine; Opium; Polyunsaturated Alkamides; Receptors, Cannabinoid; Receptors, Drug; Receptors, Nicotinic; Receptors, Opioid; Tobacco Use Disorder

1999
Cannabis: discrimination of "internal bliss"?
    Pharmacology, biochemistry, and behavior, 1999, Volume: 64, Issue:2

    The recent discovery of arachidonylethanolamide (anandamide), an endogenous ligand for cannabinoid receptors, and the synthesis of SR141716A, a cannabinoid antagonist selective for brain cannabinoid (CB1) receptors, have provided new tools to explore the mechanisms underlying cannabis abuse and dependence. Drug discrimination is the animal model with the most predictive validity and specificity for investigation of the psychoactive effects of cannabinoids related to their abuse potential, because, unlike many other drugs of abuse, delta9-tetrahydrocannabinol (delta9-THC), the major psychoactive ingredient of marijuana, is not self-administered by animals. Results of delta9-THC discrimination studies have revealed that the subjective effects of cannabis intoxication are pharmacologically selective for centrally active cannabinoid compounds, and that cannabis action at CB1 receptors is involved in medication of these effects. Less clear is the role of endogenous cannabinoid system(s) in cannabis intoxication. Anandamide, named for a Sanskrit word for "internal bliss," unreliably substitutes for delta9-THC. Further, substitution, when it is observed, occurs only at doses that also significantly decrease response rates. In contrast, delta9-THC and other structurally diverse cannabinoids fully substitute for delta9-THC at doses that do not substantially affect response rates. Attempts to train animals to discriminate anandamide (or SR141716A) have so far been unsuccessful. Preliminary evidence from drug discrimination studies with more metabolically stable anandamide analogs have suggested that these differences in the discriminative stimulus effects of delta9-THC and anandamide-like cannabinoids are not entirely due to pharmacokinetic factors, but the exact role of "internal bliss" in cannabis intoxication and dependence is still not completely understood.

    Topics: Arachidonic Acids; Cannabinoids; Cannabis; Discrimination, Psychological; Endocannabinoids; Humans; Marijuana Abuse; Polyunsaturated Alkamides; Receptors, Cannabinoid; Receptors, Drug

1999

Trials

1 trial(s) available for anandamide and Marijuana-Abuse

ArticleYear
Effects of cannabidiol on anandamide levels in individuals with cannabis use disorder: findings from a randomised clinical trial for the treatment of cannabis use disorder.
    Translational psychiatry, 2023, 04-21, Volume: 13, Issue:1

    Cannabidiol (CBD) has shown promise in treating psychiatric disorders, including cannabis use disorder - a major public health burden with no approved pharmacotherapies. However, the mechanisms through which CBD acts are poorly understood. One potential mechanism of CBD is increasing levels of anandamide, which has been implicated in psychiatric disorders including depression and cannabis use disorder. However, there is a lack of placebo-controlled human trials investigating this in psychiatric disorders. We therefore assessed whether CBD affects plasma anandamide levels compared to placebo, within a randomised clinical trial of CBD for the treatment of cannabis use disorder. Individuals meeting criteria for cannabis use disorder and attempting cannabis cessation were randomised to 28-day administration with placebo (n = 23), 400 mg CBD/day (n = 24) or 800 mg CBD/day (n = 23). We estimated the effects of each CBD dose compared to placebo on anandamide levels from baseline to day 28. Analyses were conducted both unadjusted and adjusted for cannabis use during the trial to account for effects of cannabis on the endocannabinoid system. We also investigated whether changes in plasma anandamide levels were associated with clinical outcomes relevant for cannabis use disorder (cannabis use, withdrawal, anxiety, depression). There was an effect of 800 mg CBD compared to placebo on anandamide levels from baseline to day 28 after adjusting for cannabis use. Pairwise comparisons indicated that anandamide levels unexpectedly reduced from baseline to day 28 in the placebo group (-0.048, 95% CI [-0.089, -0.007]), but did not change in the 800 mg CBD group (0.005, 95% CI [-0.036, 0.047]). There was no evidence for an effect of 400 mg CBD compared to placebo. Changes in anandamide levels were not associated with clinical outcomes. In conclusion, this study found preliminary evidence that 28-day treatment with CBD modulates anandamide levels in individuals with cannabis use disorder at doses of 800 mg/day but not 400 mg/day compared to placebo.

    Topics: Cannabidiol; Cannabis; Double-Blind Method; Dronabinol; Endocannabinoids; Hallucinogens; Humans; Marijuana Abuse

2023

Other Studies

11 other study(ies) available for anandamide and Marijuana-Abuse

ArticleYear
Adult Cellular Neuroadaptations Induced by Adolescent THC Exposure in Female Rats Are Rescued by Enhancing Anandamide Signaling.
    The international journal of neuropsychopharmacology, 2018, 11-01, Volume: 21, Issue:11

    In rodent models, chronic exposure to cannabis' psychoactive ingredient, Δ9-tetrahydrocannabinol, during adolescence leads to abnormal behavior in adulthood. In female rats, this maladaptive behavior is characterized by endophenotypes for depressive-like and psychotic-like disorders as well as cognitive deficits. We recently reported that most depressive-like behaviors triggered by adolescent Δ9-tetrahydrocannabinol exposure can be rescued by manipulating endocannabinoid signaling in adulthood with the anandamide-inactivating enzyme FAAH inhibitor, URB597. However, the molecular mechanisms underlying URB597's antidepressant-like properties remain to be established.. Here we examined the impact of adult URB597 treatment on the cellular and functional neuroadaptations that occurred in the prefrontal cortex and dentate gyrus of the hippocampus upon Δ9-tetrahydrocannabinol during adolescence through biochemical, morphofunctional, and electrophysiological studies.. We found that the positive action of URB597 is associated with the rescue of Δ9-tetrahydrocannabinol-induced deficits in endocannabinoid-mediated signaling and synaptic plasticity in the prefrontal cortex and the recovery of functional neurogenesis in the dentate gyrus of the hippocampus. Moreover, the rescue property of URB597 on depressive-like behavior requires the activity of the CB1 cannabinoid receptor.. By providing novel insights into the cellular and molecular mechanisms of URB597 at defined cortical and hippocampal circuits, our results highlight that positive modulation of endocannabinoid-signaling could be a strategy for treating mood alterations secondary to adolescent cannabis use.

    Topics: Adaptation, Psychological; Animals; Arachidonic Acids; Benzamides; Carbamates; Dentate Gyrus; Depression; Dronabinol; Endocannabinoids; Female; Marijuana Abuse; Neurogenesis; Neuronal Plasticity; Polyunsaturated Alkamides; Prefrontal Cortex; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Sexual Maturation; Signal Transduction; Synapses; Tissue Culture Techniques

2018
Behavioral Characterization of the Effects of Cannabis Smoke and Anandamide in Rats.
    PloS one, 2016, Volume: 11, Issue:4

    Cannabis is the most widely used illicit drug in the world. Delta-9-tetrahydrocannabinol (Δ9-THC) is the main psychoactive component of cannabis and its effects have been well-studied. However, cannabis contains many other cannabinoids that affect brain function. Therefore, these studies investigated the effect of cannabis smoke exposure on locomotor activity, rearing, anxiety-like behavior, and the development of dependence in rats. It was also investigated if cannabis smoke exposure leads to tolerance to the locomotor-suppressant effects of the endogenous cannabinoid anandamide. Cannabis smoke was generated by burning 5.7% Δ9-THC cannabis cigarettes in a smoking machine. The effect of cannabis smoke on the behavior of rats in a small and large open field and an elevated plus maze was evaluated. Cannabis smoke exposure induced a brief increase in locomotor activity followed by a prolonged decrease in locomotor activity and rearing in the 30-min small open field test. The cannabinoid receptor type 1 (CB1) receptor antagonist rimonabant increased locomotor activity and prevented the smoke-induced decrease in rearing. Smoke exposure also increased locomotor activity in the 5-min large open field test and the elevated plus maze test. The smoke exposed rats spent more time in the center zone of the large open field, which is indicative of a decrease in anxiety-like behavior. A high dose of anandamide decreased locomotor activity and rearing in the small open field and this was not prevented by rimonabant or pre-exposure to cannabis smoke. Serum Δ9-THC levels were 225 ng/ml after smoke exposure, which is similar to levels in humans after smoking cannabis. Exposure to cannabis smoke led to dependence as indicated by more rimonabant-precipitated somatic withdrawal signs in the cannabis smoke exposed rats than in the air-control rats. In conclusion, chronic cannabis smoke exposure in rats leads to clinically relevant Δ9-THC levels, dependence, and has a biphasic effect on locomotor activity.

    Topics: Animals; Arachidonic Acids; Behavior, Animal; Drug Tolerance; Endocannabinoids; Exploratory Behavior; Male; Marijuana Abuse; Marijuana Smoking; Maze Learning; Motor Activity; Polyunsaturated Alkamides; Rats; Rats, Wistar; Time Factors

2016
Increased CB2 mRNA and anandamide in human blood after cessation of cannabis abuse.
    Naunyn-Schmiedeberg's archives of pharmacology, 2014, Volume: 387, Issue:7

    In previous studies, long-term cannabis use led to alterations of the endocannabinoid system including an increase in CB1 and/or CB2 receptor messenger RNA (mRNA) in blood cells and an increase in the serum level of the endocannabinoid 2-arachidonoyl glycerol. However, in those studies, cannabis use was stopped only few days before testing or not interrupted at all. Therefore, one cannot decide whether the alterations are due to long-term cannabis abuse or are confounded by acute effects of cannabis. Blood was sampled from donors that had smoked marijuana ≥20 times in their lives but had abstained from cannabis for ≥6 months (high-frequency users, HFU) and from controls (cannabis use ≤5 times lifetime). CB1 and CB2 mRNA was determined in peripheral mononuclear blood cells using the reverse transcriptase polymerase chain reaction. Serum anandamide level was assayed using electrospray tandem mass spectrometry. CB2 mRNA was increased by 45 % in HFU when compared to controls, whereas CB1 mRNA did not differ. The anandamide level in HFU exceeded that in controls by 90 %. Tobacco smoking could be excluded as a confounding factor. In conclusion, marijuana users that had smoked marijuana ≥20 times in their lives and stopped cannabis use at least 6 months before the study show an increase in CB2 receptor mRNA in the blood and in serum anandamide level. These alterations resemble those obtained for marijuana smokers that had stopped cannabis use only few days before testing and may be implicated in the pathogenesis of disorders associated with long-term cannabis use.

    Topics: Adult; Arachidonic Acids; Endocannabinoids; Female; Humans; Leukocytes, Mononuclear; Male; Marijuana Abuse; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; RNA, Messenger; Young Adult

2014
Cerebrospinal fluid anandamide levels, cannabis use and psychotic-like symptoms.
    The British journal of psychiatry : the journal of mental science, 2013, Volume: 202, Issue:5

    Anandamide is a ligand of the endocannabinoid system. Animals show a depletion following repeated Δ(9)-tetrahydrocannabinol (THC) administration but the effect of cannabis use on central nervous system levels of endocannabinoids has not been previously examined in humans. Cerebrospinal fluid (CSF) levels of the endocannabinoids anandamide, 2-arachidonoylglycerol (2-AG) and related lipids were tested in 33 volunteers (20 cannabis users). Lower levels of CSF anandamide and higher levels of 2-AG in serum were observed in frequent compared with infrequent cannabis users. Levels of CSF anandamide were negatively correlated with persisting psychotic symptoms when drug-free. Higher levels of anandamide are associated with a lower risk of psychotic symptoms following cannabis use.

    Topics: Analysis of Variance; Arachidonic Acids; Endocannabinoids; Female; Glycerides; Humans; Male; Marijuana Abuse; Polyunsaturated Alkamides; Psychotic Disorders; Signal Transduction; Young Adult

2013
Palmitoylethanolamide: from endogenous cannabimimetic substance to innovative medicine for the treatment of cannabis dependence.
    Medical hypotheses, 2013, Volume: 81, Issue:4

    Palmitoylethanolamide (PEA) is a fatty acid amide showing some pharmacodynamic similarities with Δ9-tetrahydrocannabinol, the principal psychoactive compound present in the cannabis plant. Like Δ9-tetrahydrocannabinol, PEA can produce a direct or indirect activation of cannabinoid receptors. Furthermore, it acts as an agonist at TRPV1 receptor. The hypothesis is that PEA has anti-craving effects in cannabis dependent patients, is efficacious in the treatment of withdrawal symptoms, produces a reduction of cannabis consumption and is effective in the prevention of cannabis induced neurotoxicity and neuro-psychiatric disorders.

    Topics: Amides; Arachidonic Acids; Dronabinol; Endocannabinoids; Ethanolamines; Humans; Marijuana Abuse; Models, Biological; Molecular Structure; Palmitic Acids; Polyunsaturated Alkamides; Substance Withdrawal Syndrome; TRPV Cation Channels

2013
Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist.
    Addiction biology, 2011, Volume: 16, Issue:3

    Several recent studies suggest functional and molecular interactions between striatal adenosine A(2A) and cannabinoid CB(1) receptors. Here, we demonstrate that A(2A) receptors selectively modulate reinforcing effects of cannabinoids. We studied effects of A(2A) receptor blockade on the reinforcing effects of delta-9-tetrahydrocannabinol (THC) and the endogenous CB(1) receptor ligand anandamide under a fixed-ratio schedule of intravenous drug injection in squirrel monkeys. A low dose of the selective adenosine A(2A) receptor antagonist MSX-3 (1 mg/kg) caused downward shifts of THC and anandamide dose-response curves. In contrast, a higher dose of MSX-3 (3 mg/kg) shifted THC and anandamide dose-response curves to the left. MSX-3 did not modify cocaine or food pellet self-administration. Also, MSX-3 neither promoted reinstatement of extinguished drug-seeking behavior nor altered reinstatement of drug-seeking behavior by non-contingent priming injections of THC. Finally, using in vivo microdialysis in freely-moving rats, a behaviorally active dose of MSX-3 significantly counteracted THC-induced, but not cocaine-induced, increases in extracellular dopamine levels in the nucleus accumbens shell. The significant and selective results obtained with the lower dose of MSX-3 suggest that adenosine A(2A) antagonists acting preferentially at presynaptic A(2A) receptors might selectively reduce reinforcing effects of cannabinoids that lead to their abuse. However, the appearance of potentiating rather than suppressing effects on cannabinoid reinforcement at the higher dose of MSX-3 would likely preclude the use of such a compound as a medication for cannabis abuse. Adenosine A(2A) antagonists with more selectivity for presynaptic versus postsynaptic receptors could be potential medications for treatment of cannabis abuse.

    Topics: Adenosine A2 Receptor Antagonists; Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Cocaine; Corpus Striatum; Dopamine; Dose-Response Relationship, Drug; Dronabinol; Endocannabinoids; Injections, Intravenous; Male; Marijuana Abuse; Microdialysis; Nucleus Accumbens; Polyunsaturated Alkamides; Psychotropic Drugs; Rats; Rats, Sprague-Dawley; Receptor, Adenosine A2A; Receptor, Cannabinoid, CB1; Receptors, Presynaptic; Reinforcement, Psychology; Saimiri; Self Administration; Xanthines

2011
FAAH-/- mice display differential tolerance, dependence, and cannabinoid receptor adaptation after delta 9-tetrahydrocannabinol and anandamide administration.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2010, Volume: 35, Issue:8

    Repeated administration of Delta(9)-tetrahydrocannabinol (THC), the primary psychoactive constituent of Cannabis sativa, induces profound tolerance that correlates with desensitization and downregulation of CB(1) cannabinoid receptors in the CNS. However, the consequences of repeated administration of the endocannabinoid N-arachidonoyl ethanolamine (anandamide, AEA) on cannabinoid receptor regulation are unclear because of its rapid metabolism by fatty acid amide hydrolase (FAAH). FAAH(-/-) mice dosed subchronically with equi-active maximally effective doses of AEA or THC displayed greater rightward shifts in THC dose-effect curves for antinociception, catalepsy, and hypothermia than in AEA dose-effect curves. Subchronic THC significantly attenuated agonist-stimulated [(35)S]GTP gamma S binding in brain and spinal cord, and reduced [(3)H]WIN55,212-2 binding in brain. Interestingly, AEA-treated FAAH(-/-) mice showed less CB(1) receptor downregulation and desensitization than THC-treated mice. Experiments examining tolerance and cross-tolerance indicated that the behavioral effects of THC, a low efficacy CB(1) receptor agonist, were more sensitive to receptor loss than those of AEA, a higher efficacy agonist, suggesting that the expression of tolerance was more affected by the intrinsic activity of the ligand at testing than during subchronic treatment. In addition, the CB(1) receptor antagonist, rimonabant, precipitated a markedly reduced magnitude of withdrawal in FAAH(-/-) mice treated subchronically with AEA compared with mice treated repeatedly with THC. The findings that repeated AEA administration produces lesser adaptive changes at the CB(1) receptor and has reduced dependence liability compared with THC suggest that pharmacotherapies targeting endocannabinoid catabolic enzymes are less likely to promote tolerance and dependence than direct acting CB(1) receptor agonists.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Behavior, Animal; Benzoxazines; Brain; Cannabinoid Receptor Modulators; Dose-Response Relationship, Drug; Dronabinol; Drug Tolerance; Endocannabinoids; Guanosine 5'-O-(3-Thiotriphosphate); Male; Marijuana Abuse; Mice; Mice, Inbred C57BL; Mice, Knockout; Morpholines; Naphthalenes; Piperidines; Polyunsaturated Alkamides; Protein Binding; Psychotropic Drugs; Pyrazoles; Receptor, Cannabinoid, CB1; Rimonabant; Sulfur Isotopes; Tritium

2010
Cannabimimetic effects modulated by cholinergic compounds.
    Addiction biology, 2008, Volume: 13, Issue:3-4

    This report is based upon a clinical case series describing five patients who volitionally adultered cannabis with a variety of compounds that shared a common trait-cholinergic modulation. They included a nicotinic agonist, muscarinic antagonist and antiacetylcholinesterase compounds. Some of these compounds (e.g. tobacco) are known to exert pharmacokinetic effects upon cannabinoids (e.g. improved drug absorption). Contrarily, our patients claimed that the compounds altered pharmacodynamic 'cannabimimetic' effects. The case series was supported by forensic identification of adulterants and by use of a symptom causality algorithm. A survey of the gray literature and drug culture web sites indicated that the case series portended a larger social phenomenon. Furthermore, many clinical reports, animal behaviour studies and in vitro mechanistic studies substantiated our observations. In conclusion, we provide empirical data regarding a new trend in the drug culture-cholinergic modulation of cannabinoid effects-that presents new research directions.

    Topics: Acetylcholine; Adult; Arachidonic Acids; Cannabinoid Receptor Modulators; Endocannabinoids; Female; Gas Chromatography-Mass Spectrometry; Humans; Male; Marijuana Abuse; Middle Aged; Polyunsaturated Alkamides; Receptors, Cholinergic; Young Adult

2008
Anandamide levels in cerebrospinal fluid of first-episode schizophrenic patients: impact of cannabis use.
    Schizophrenia research, 2007, Volume: 94, Issue:1-3

    Previous studies have shown that cerebrospinal fluid (CSF) from schizophrenic patients contains significantly higher levels of the endogenous cannabinoid anandamide than does CSF from healthy volunteers. Moreover, CSF anandamide levels correlated inversely with psychotic symptoms, suggesting that anandamide release in the central nervous system (CNS) may serve as an adaptive mechanism countering neurotransmitter abnormalities in acute psychoses. In the present study we examined whether cannabis use may alter such a mechanism.. We used liquid chromatography/mass spectrometry (LC/MS) to measure anandamide levels in serum and CSF from first-episode, antipsychotic-naïve schizophrenics (n=47) and healthy volunteers (n=81). Based on reported patterns of cannabis use and urine delta9-tetrahydrocannabinol (delta9-THC) tests, each subject group was further divided into two subgroups: 'low-frequency' and 'high-frequency' cannabis users (lifetime use < or = 5 times and > 20 times, respectively). Serum delta9-THC was investigated to determine acute use and three patients were excluded from the analysis due to detectable delta9-THC levels in serum.. Schizophrenic low-frequency cannabis users (n=25) exhibited > 10-fold higher CSF anandamide levels than did schizophrenic high-frequency users (n=19, p=0.008), healthy low-frequency (n=55, p<0.001) or high-frequency users (n=26, p<0.001). In contrast, no significant differences in serum anandamide levels were found among the four subgroups. CSF anandamide levels and disease symptoms were negatively correlated in both user groups.. The results indicate that frequent cannabis exposure may down-regulate anandamide signaling in the CNS of schizophrenic patients, but not of healthy individuals. Thus, our findings suggest that alterations in endocannabinoid signaling might be an important component of the mechanism through which cannabis impacts mental health.

    Topics: Acute Disease; Adult; Arachidonic Acids; Cannabinoids; Chromatography, Liquid; Endocannabinoids; Female; Gas Chromatography-Mass Spectrometry; Humans; Male; Marijuana Abuse; Polyunsaturated Alkamides; Prevalence; Psychotic Disorders; Schizophrenia; Time Factors

2007
Cannabinoid antagonists: a treatment in search of an illness.
    Archives of general psychiatry, 2001, Volume: 58, Issue:4

    Topics: Adjuvants, Immunologic; Arachidonic Acids; Cannabinoids; Dronabinol; Endocannabinoids; Humans; Marijuana Abuse; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant

2001
Enhancement of anandamide formation in the limbic forebrain and reduction of endocannabinoid contents in the striatum of delta9-tetrahydrocannabinol-tolerant rats.
    Journal of neurochemistry, 2000, Volume: 74, Issue:4

    Recent studies have shown that the pharmacological tolerance observed after prolonged exposure to synthetic or plant-derived cannabinoids in adult rats is accompanied by down-regulation/desensitization of brain cannabinoid receptors. However, no evidence exists on possible changes in the contents of the endogenous ligands of cannabinoid receptors in the brain of cannabinoid-tolerant rats. The present study was designed to elucidate this possibility by measuring, by means of isotope dilution gas chromatography/mass spectrometry, the contents of both anandamide (arachidonoylethanolamide; AEA) and its biosynthetic precursor, N-arachidonoylphosphatidylethanolamine (NArPE), and 2-arachidonoylglycerol (2-AG) in several brain regions of adult male rats treated daily with delta9-tetrahydrocannabinol (delta9-THC) for a period of 8 days. The areas analyzed included cerebellum, striatum, limbic forebrain, hippocampus, cerebral cortex, and brainstem. The same regions were also analyzed for cannabinoid receptor binding and WIN-55,212-2-stimulated guanylyl-5'-O-(gamma-[35S]thio)-triphosphate ([35S]GTPgammaS) binding to test the development of the well known down-regulation/desensitization phenomenon. Results were as follows: As expected, cannabinoid receptor binding and WIN-55,212-2-stimulated [35S]GTPgammaS binding decreased in most of the brain areas of delta9-THC-tolerant rats. The only region exhibiting no changes in both parameters was the limbic forebrain. This same region exhibited a marked (almost fourfold) increase in the content of AEA after 8 days of delta9-THC treatment. By contrast, the striatum exhibited a decrease in AEA contents, whereas no changes were found in the brainstem, hippocampus, cerebellum, or cerebral cortex. The increase in AEA contents observed in the limbic forebrain was accompanied by a tendency of NArPE levels to decrease, whereas in the striatum, no significant change in NArPE contents was found. The contents of 2-AG were unchanged in brain regions from delta9-THC-tolerant rats, except for the striatum where they dropped significantly. In summary, the present results show that prolonged activation of cannabinoid receptors leads to decreased endocannabinoid contents and signaling in the striatum and to increased AEA formation in the limbic forebrain. The pathophysiological implications of these findings are discussed in view of the proposed roles of endocannabinoids in the control of motor behavior and emotional states.

    Topics: Animals; Arachidonic Acids; Benzoxazines; Calcium Channel Blockers; Cannabinoid Receptor Modulators; Cannabinoids; Down-Regulation; Dronabinol; Endocannabinoids; Guanosine 5'-O-(3-Thiotriphosphate); Limbic System; Male; Marijuana Abuse; Morpholines; Naphthalenes; Phosphatidylethanolamines; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptors, Cannabinoid; Receptors, Drug; Sulfur Radioisotopes; Tritium

2000