anandamide and Irritable-Bowel-Syndrome

anandamide has been researched along with Irritable-Bowel-Syndrome* in 2 studies

Other Studies

2 other study(ies) available for anandamide and Irritable-Bowel-Syndrome

ArticleYear
Fetal Syndrome of Endocannabinoid Deficiency (FSECD) In Maternal Obesity.
    Medical hypotheses, 2016, Volume: 96

    The theory of a fetal origin of adult diseases links many pathological conditions to very early life events and is known as a "developmental programming" phenomenon. The mechanisms of this phenomenon are not quite understood and have been explained by inflammation, stress, etc. In particular the epidemic of obesity, with more than 64% of women being overweight or obese, has been associated with conditions in later life such as mental disorders, diabetes, asthma, and irritable bowel syndrome. Interestingly, these diseases were classified a decade ago as Clinical Syndrome of Endocannabinoid Deficiency (CECD), which was first described by Russo in 2004. Cannabinoids have been used for the treatment of chronic pain for millenniums and act through the mechanism of "kick-starting" the components of the endogenous cannabinoid system (ECS). ECS is a pharmacological target for the treatment of obesity, inflammation, cardiovascular and neuronal damage, and pain. We hypothesize that the deteriorating effect of maternal obesity on offspring health is explained by the mechanism of Fetal Syndrome of Endocannabinoid Deficiency (FSECD), which accompanies maternal obesity. Here we provide support for this hypothesis.

    Topics: Adult; Animals; Arachidonic Acids; Asthma; Autism Spectrum Disorder; Cannabinoids; Endocannabinoids; Female; Fetal Nutrition Disorders; Glycerides; Humans; Insulin Resistance; Irritable Bowel Syndrome; Models, Theoretical; Obesity; Phenotype; Polyunsaturated Alkamides; Pregnancy; Pregnancy Complications; Syndrome; Young Adult

2016
Vagal anandamide signaling via cannabinoid receptor 1 contributes to luminal 5-HT modulation of visceral nociception in rats.
    Pain, 2014, Volume: 155, Issue:8

    Serotonin (5-HT) plays pivotal roles in the pathogenesis of postinfectious irritable bowel syndrome (PI-IBS), and luminal 5-HT time-dependently modulates visceral nociception. We found that duodenal biopsies from PI-IBS patients exhibited increased 5-HT and decreased anandamide levels and that decreased anandamide was associated with abdominal pain severity, indicating a link between 5-HT and endocannabinoid signaling pathways in PI-IBS. To understand this, we investigated the role of endocannabinoids in 5-HT modulation of visceral nociception in a rat model. Acute intraduodenally applied 5-HT attenuated the visceromotor response (VMR) to colorectal distention, and this was reversed by the cannabinoid receptor 1 (CB1) antagonist AM251. Duodenal anandamide (but not 2-arachidonoylglycerol) content was greatly increased after luminal 5-HT treatment. This effect was abrogated by the 5-HT 3 receptor (5-HT3R) antagonist granisetron, which was luminally delivered to preferentially target vagal terminals. Chemical denervation of vagal afferents blocked 5-HT-evoked antinociception and anandamide release. Chronic luminal 5-HT exposure for 5 days increased baseline VMR and VMR post-5-HT (days 4 and 5). Duodenal levels of anandamide and N-acyl-phosphatidylethanolamine-specific phospholipase D (NAPE-PLD, the anandamide-synthesizing enzyme) protein gradually declined from day 1 to 5. The time-dependent effects of 5-HT were abolished by daily granisetron pretreatment. Daily pretreatment with CB1 agonists or anandamide from day 3 attenuated 5-HT-induced hyperalgesia. These data suggest that vagal 5-HT3R-mediated duodenal anandamide release contributes to acute luminal 5-HT-induced antinociception via CB1 signaling, whereas decreased anandamide is associated with hyperalgesia upon chronic 5-HT treatment. Further understanding of peripheral vagal anandamide signaling may provide insights into the mechanisms underlying 5-HT-related IBS.

    Topics: Adult; Animals; Arachidonic Acids; Cannabinoid Receptor Antagonists; Endocannabinoids; Female; Humans; Intestinal Mucosa; Irritable Bowel Syndrome; Male; Middle Aged; Nociception; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Receptor, Cannabinoid, CB1; Serotonin; Vagus Nerve; Visceral Pain

2014