anandamide has been researched along with Hypothermia* in 9 studies
9 other study(ies) available for anandamide and Hypothermia
Article | Year |
---|---|
Guineensine is a novel inhibitor of endocannabinoid uptake showing cannabimimetic behavioral effects in BALB/c mice.
High-content screening led to the identification of the N-isobutylamide guineensine from Piper nigrum as novel nanomolar inhibitor (EC50=290nM) of cellular uptake of the endocannabinoid anandamide (AEA). Noteworthy, guineensine did not inhibit endocannabinoid degrading enzymes fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL) nor interact with cannabinoid receptors or fatty acid binding protein 5 (FABP5), a major cytoplasmic AEA carrier. Activity-based protein profiling showed no inhibition of serine hydrolases. Guineensine also inhibited the cellular uptake of 2-arachidonoylglycerol (2-AG). Preliminary structure-activity relationships between natural guineensine analogs indicate the importance of the alkyl chain length interconnecting the pharmacophoric isobutylamide and benzodioxol moieties for AEA cellular uptake inhibition. Guineensine dose-dependently induced cannabimimetic effects in BALB/c mice shown by strong catalepsy, hypothermia, reduced locomotion and analgesia. The catalepsy and analgesia were blocked by the CB1 receptor antagonist rimonabant (SR141716A). Guineensine is a novel plant natural product which specifically inhibits endocannabinoid uptake in different cell lines independent of FAAH. Its scaffold may be useful to identify yet unknown targets involved in endocannabinoid transport. Topics: Alkenes; Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Biological Transport; Brain; Cannabinoid Receptor Antagonists; Catalepsy; Dose-Response Relationship, Drug; Endocannabinoids; Fatty Acid-Binding Proteins; Glycerides; Heterocyclic Compounds, 2-Ring; Humans; Hypothermia; Locomotion; Male; Mice; Mice, Inbred BALB C; Monoacylglycerol Lipases; Neoplasm Proteins; Piper; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptors, Cannabinoid; Rimonabant; Serine Endopeptidases; Structure-Activity Relationship; U937 Cells | 2014 |
In-vivo pharmacological evaluation of the CB1-receptor allosteric modulator Org-27569.
Several allosteric modulators (AMs) of the CB1 receptor have been characterized in vitro, including Org27569, which enhances CB1-specific binding of [H]CP55,940, but behaves as an insurmountable CB1-receptor antagonist in several biochemical assays. Although a growing body of research has investigated the molecular actions of this unusual AM, it is unknown whether these actions translate to the whole animal. The purpose of the present study was to determine whether Org27569 would produce effects in well-established mouse behavioral assays sensitive to CB1 orthosteric agonists and antagonists. Similar to the orthosteric CB1 antagonist/inverse agonist rimonabant, Org27569 reduced food intake; however, this anorectic effect occurred independently of the CB1 receptor. Org27569 did not elicit CB1-mediated effects alone and lacked efficacy in altering antinociceptive, cataleptic, and hypothermic actions of the orthosteric agonists anandamide, CP55,940, and Δ-tetrahydrocannabinol. Moreover, it did not alter the discriminative stimulus effects of anandamide in FAAH-deficient mice or Δ-tetrahydrocannabinol in wild-type mice in the drug discrimination paradigm. These findings question the utility of Org27569 as a 'gold standard' CB1 AM and underscore the need for the development of CB1 AMs with pharmacology that translates from the molecular level to the whole animal. Topics: Allosteric Regulation; Amidohydrolases; Animals; Arachidonic Acids; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Cannabinoid Receptor Modulators; Catalepsy; Cyclohexanols; Dronabinol; Drug Evaluation; Eating; Endocannabinoids; Female; Hypothermia; Indoles; Male; Mice; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Nociception; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Rimonabant | 2014 |
The hypothermic response to bacterial lipopolysaccharide critically depends on brain CB1, but not CB2 or TRPV1, receptors.
Hypothermia occurs in the most severe cases of systemic inflammation, but the mechanisms involved are poorly understood. This study evaluated whether the hypothermic response to bacterial lipopolysaccharide (LPS) is modulated by the endocannabinoid anandamide(AEA) and its receptors: cannabinoid-1 (CB1), cannabinoid-2 (CB2) and transient receptor potential vanilloid-1 (TRPV1). In rats exposed to an ambient temperature of 22◦C, a moderate dose of LPS (25 - 100 μg kg−1 I.V.) induced a fall in body temperature with a nadir at ∼100 minpostinjection. This response was not affected by desensitization of intra-abdominal TRPV1 receptors with resiniferatoxin (20 μg kg - 1 I.P.), by systemic TRPV1 antagonism with capsazepine(40mg kg−1 I.P.), or by systemic CB2 receptor antagonism with SR144528 (1.4 mg kg−1 I.P.).However, CB1 receptor antagonism by rimonabant (4.6mg kg−1 I.P.) or SLV319 (15mg kg−1 I.P.)blocked LPS hypothermia. The effect of rimonabant was further studied. Rimonabant blocked LPS hypothermia when administered I.C.V. at a dose (4.6 μg) that was too low to produce systemic effects. The blockade of LPS hypothermia by I.C.V. rimonabant was associated with suppression of the circulating level of tumour necrosis factor-α. In contrast to rimonabant,the I.C.V. administration of AEA (50 μg) enhanced LPS hypothermia. Importantly, I.C.V. AEAdid not evoke hypothermia in rats not treated with LPS, thus indicating that AEA modulates LPS-activated pathways in the brain rather than thermo effector pathways. In conclusion, the present study reveals a novel, critical role of brain CB1 receptors in LPS hypothermia. Brain CB1 receptors may constitute a new therapeutic target in systemic inflammation and sepsis. Topics: Analysis of Variance; Animals; Arachidonic Acids; Body Temperature Regulation; Brain; Camphanes; Capsaicin; Disease Models, Animal; Diterpenes; Endocannabinoids; Female; Hypothermia; Injections, Intraperitoneal; Injections, Intravenous; Injections, Intraventricular; Lipopolysaccharides; Male; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Long-Evans; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Signal Transduction; Sulfonamides; Time Factors; TRPV Cation Channels | 2011 |
Assessment of anandamide's pharmacological effects in mice deficient of both fatty acid amide hydrolase and cannabinoid CB1 receptors.
In the present study, we investigated whether anandamide produces its behavioral effects through a cannabinoid CB(1) receptor mechanism of action. The behavioral effects of anandamide were evaluated in mice that lacked both fatty acid amide hydrolase (FAAH) and cannabinoid CB(1) receptors (DKO) as compared to FAAH (-/-), cannabinoid CB(1) (-/-), and wild type mice. Anandamide produced analgesia, catalepsy, and hypothermia in FAAH (-/-) mice, but failed to elicit any of these effects in the other three genotypes. In contrast, anandamide decreased locomotor behavior regardless of genotype, suggesting the involvement of multiple mechanisms of action, including its products of degradation. These findings indicate that the cannabinoid CB(1) receptor is the predominant target mediating anandamide's behavioral effects. Topics: Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Catalepsy; Endocannabinoids; Female; Hypothermia; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Motor Activity; Pain Threshold; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1 | 2007 |
The anandamide transport inhibitor AM404 reduces ethanol self-administration.
The endocannabinoid system mediates in the pharmacological actions of ethanol and genetic studies link endocannabinoid signaling to alcoholism. Drugs activating cannabinoid CB1 receptors have been found to promote alcohol consumption but their effects on self-administration of alcohol are less clear because of the interference with motor performance. To avoid this problem, a novel pharmacological approach to the study of the contribution of the cannabinoid system in alcoholism may be to use drugs that locally amplify the effects of alcohol on endogenous cannabinoids. In the present study we addressed this model by studying the effects of the anandamide transport inhibitor N-(4-hydroxyphenyl) arachidonoyl-ethanolamide (AM404) on both ethanol self-administration and reinstatement of alcohol-seeking behavior in rats. The results show that AM404 significantly reduced ethanol self-administration in a dose-dependent manner but failed to modify reinstatement for lever pressing induced by the stimulus associated with alcohol. This effect was not due to a motor depressant effect and was not related to a decrease in general motivational state, as it was not effective in other reward paradigms such as lever pressing for a saccharin solution. The mechanism of action of AM404 does not involve cannabinoid CB1 receptors as the CB1-selective antagonist SR141716A did not block the reduction of ethanol self-administration induced by the anandamide uptake blocker. Moreover, 3-(1,1-dimethylheptyl)-(-)-11-hydroxy-delta 8-tetrahydrocannabinol (HU-210), a classical cannabinoid receptor agonist, did not affect ethanol self-administration. The effects of AM404 are not mediated by either vanilloid VR1 receptors or cannabinoid CB2 receptors because it is not antagonized by either the VR1 receptor antagonist capsazepine or the CB2 antagonist AM630. These results indicate that AM404 may be considered as an innovative approach to reduce alcohol consumption. Topics: Alcohol Drinking; Animals; Arachidonic Acids; Capsaicin; Central Nervous System Depressants; Conditioning, Operant; Depression, Chemical; Endocannabinoids; Ethanol; Extinction, Psychological; Hypothermia; Male; Motor Activity; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Reinforcement, Psychology; Saccharin; Self Administration; TRPV Cation Channels | 2007 |
Role of TRPV1 and cannabinoid CB1 receptors in AM 404-evoked hypothermia in rats.
AM 404 inhibits endocannabinoid uptake and enhances the cannabinoid CB(1)-mediated effects of endogenous cannabinoids. Accumulating evidence also suggests that AM 404 acts at sites other than the endocannabinoid system. One site is the transient receptor potential vanilloid 1 cation channel (TRPV1). A useful endpoint for discriminating between TRPV1- or CB(1)-mediated effects of AM 404 is hypothermia. This is because TRPV1 or CB(1) receptor activation produces a significant hypothermia in rats. The present study investigated the effects of AM 404 (1, 5, 10 and 20 mg/kg, i.p.) on body temperature in rats and the involvement of TRPV1 and CB(1) receptors in the effects of AM 404. Doses of 10 and 20 mg/kg of AM 404 produced significant hypothermia. Pre-treatment with capsazepine (30 mg/kg, i.p.) blocked the hypothermia caused by 10 and 20 mg/kg of AM 404. Pre-treatment with SB 366791 (2 mg/kg, i.p.), a new TRPV1 antagonist, also abolished the hypothermia evoked by AM 404 (20 mg/kg, i.p.). In contrast, pre-treatment with SR 141716A (Rimonabant), a CB(1) antagonist, or AA-5-HT, a fatty acid amide hydrolase (FAAH) blocker, did not affect AM 404-evoked hypothermia. The present data demonstrate that AM 404 evokes a significant hypothermia in rats that is dependent on TRPV1 receptor activation. Topics: Amidohydrolases; Anilides; Animals; Arachidonic Acids; Body Temperature; Capsaicin; Cinnamates; Endocannabinoids; Hypothermia; Male; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Rimonabant; TRPV Cation Channels | 2006 |
Influence of phenylmethylsulfonyl fluoride on anandamide brain levels and pharmacological effects.
The endogenous cannabinoid anandamide produces cannabimimetic effects similar to those produced by delta9-tetrahydrocannabinol (delta9-THC), but has a much shorter duration of action due to its rapid metabolism to arachidonic acid and polar metabolites via action of fatty acid amide hydrolase (FAAH). Our earlier observations that anandamide's effects persisted after brain levels of anandamide itself had substantially dropped prompted us to examine the influence of the irreversible amidase inhibitor, phenylmethyl sulfonyl fluoride (PMSF), on the brain levels and pharmacological effects of anandamide. As shown previously, pretreatment with PMSF resulted in a leftward shift of the anandamide dose effect curves for antinociception and hypothermia in male mice. Brain and plasma levels of anandamide, arachidonic acid and polar metabolites peaked at 1 min after i.v. injection with 3H-anandamide and remained high at 5 min post-injection, with levels falling sharply thereafter. Pretreatment with PMSF (30 mg/kg, i.p.) prior to an injection of 1 or 10 mg/kg 3H-anandamide resulted 5 min later in enhanced brain levels of anandamide compared to those obtained with 3H-anandamide plus vehicle injection. Levels of arachidonic acid and polar metabolites in brain were not significantly increased. The clear correspondence between brain levels of anandamide following pretreatment with PMSF and pharmacological activity suggests that this parent compound is responsible for the antinociception and hypothermia that occurred 5 min after injection. These results further suggest that metabolite contribution to anandamide's effects, if any, would occur primarily at later times. Topics: Amidohydrolases; Animals; Arachidonic Acid; Arachidonic Acids; Brain; Dose-Response Relationship, Drug; Drug Synergism; Endocannabinoids; Enzyme Inhibitors; Hypothermia; Male; Mice; Mice, Inbred ICR; Nociceptors; Phenylmethylsulfonyl Fluoride; Polyunsaturated Alkamides; Tritium | 2000 |
Physiological and behavioural effects of the endogenous cannabinoid, arachidonylethanolamide (anandamide), in the rat.
1. Arachidonylethanolamide (AEA; anandamide) has been isolated from mammalian brain and found to bind to, and is thought to be, an endogenous ligand for the cannabinoid receptor. In order to understand better its behavioural and physiological properties, we have examined its acute effects in unanaesthetized freely behaving rats. 2. Intravenous AEA caused dose-related decreases in locomotor behaviour, a pronounced hyperreflexia, and a moderate antinociceptive state. At doses between 3 and 30 mg kg-1, a dose-dependent hypothermia and profound, time-dependent cardiovascular changes were also observed. 3. An immediate bradycardia exceeding 50% was seen within 10-15 s of administration and lasted up to 11 min following the highest dose of the drug. In contrast, the change in mean arterial pressure was biphasic: an immediate 20% decrease in mean arterial pressure followed by a significant increase in blood pressure that lasted about 13 min after the highest dose. 4. These data demonstrate that AEA in the unanaesthetized rat exerts behavioural and physiological effects generally similar to those seen following natural cannabinoids and synthetic cannabimimetic agents and suggests a role for AEA in regulation of various physiological processes. Topics: Analgesia; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arachidonic Acid; Arachidonic Acids; Behavior, Animal; Blood Pressure; Calcium Channel Blockers; Cannabinoids; Dose-Response Relationship, Drug; Endocannabinoids; Heart Rate; Hypothermia; Indomethacin; Male; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley | 1996 |
Anandamide, an endogenous ligand of the cannabinoid receptor, induces hypomotility and hypothermia in vivo in rodents.
Anandamide (arachidonylethanolamide), an arachidonic acid derivative isolated from the porcine brain, displays binding characteristics indicative of an endogenous ligand for the cannabinoid receptor. The functional activity of anandamide was tested in vivo using behavioral and physiological paradigms in laboratory rodents. At IP doses from 2 to 20 mg/kg in mice, anandamide significantly decreased spontaneous motor activity in a Digiscan open field. Rectal body temperature significantly decreased at doses of 10 and 20 mg/kg in rats. At doses from 0.03 to 30 mg/kg, anandamide had no significant effect on chow consumption in ad lib fed rats. Over the dose range of 2-20 mg/kg, anandamide did not show anxiolytic properties in the mouse light<-->dark exploration model of anxiety. Over the dose range of 0.3-3 mg/kg, anandamide had no effect on choice accuracy or session duration in the delayed nonmatching to sample memory task (DNMTS) in rats. These results demonstrate that anandamide has biological and behavioral effects in awake rodents, some of which are similar to the reported actions of THC. Topics: Amides; Animals; Anti-Anxiety Agents; Arachidonic Acids; Dose-Response Relationship, Drug; Endocannabinoids; Fatty Acids, Unsaturated; Feeding Behavior; Hypothermia; Male; Memory; Mice; Mice, Inbred C57BL; Motor Activity; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Receptors, Drug | 1993 |