anandamide has been researched along with Hypertension* in 20 studies
1 review(s) available for anandamide and Hypertension
Article | Year |
---|---|
Neural control of blood pressure: focusing on capsaicin-sensitive sensory nerves.
Hypertension is a major risk factor leading to devastating cardiovascular events such as myocardial infarction, stroke, heart failure, and renal failure. Despite intensive research in this area, mechanisms underlying essential hypertension remain to be defined. Accumulating evidence indicates that neural components including both sympathetic and sensory nerves innervating the cardiovascular and renal tissues play a key role in regulating water and sodium homeostasis and blood pressure, and that abnormalities in these nervous systems contribute to increased salt sensitivity and development of hypertension. In contrast to relatively well-defined sympathetic nervous system, the role of sensory nerves in the control of cardiovascular homeostasis is largely unknown. Data from our laboratory show that degeneration of capsaicin-sensitive sensory nerves renders a rat salt sensitive in terms of blood pressure regulation. Evidence is also available indicating that sensory nerves, in interacting with other neurohormonal systems including the sympathetic nervous system, the renin-angiotensin aldosterone system, the endothelin system, and superoxide, regulate cardiovascular and renal function in such that they play a counter-balancing role in preventing salt-induced increases in blood pressure under pathophysiological conditions. Altered activity of the sensory nervous system, a condition existed in both genetic and experimental models of hypertension, contributes to the development of hypertension. This article focuses on reviewing the current knowledge regarding the possible role of sensory nerves in regulating blood pressure homeostasis as well as the function and regulation of novel molecules expressed in sensory nerves. Topics: Animals; Antihypertensive Agents; Arachidonic Acids; Blood Pressure; Calcium Channel Blockers; Capsaicin; Endocannabinoids; Endothelins; Humans; Hypertension; Neurons, Afferent; Polyunsaturated Alkamides; Reactive Oxygen Species; Renin-Angiotensin System; Sodium, Dietary; Sympathetic Nervous System; TRPV Cation Channels | 2007 |
19 other study(ies) available for anandamide and Hypertension
Article | Year |
---|---|
Central nervous system, peripheral and hemodynamic effects of nanoformulated anandamide in hypertension.
Hypertensive lesions induce alterations at hemodynamic, peripheral, and central levels. Anandamide (N-arachidonoylethanolamine; AEA) protects neurons from inflammatory damage, but its free administration may cause central adverse effects. AEA controlled release by nanoformulations could reduce/eliminate its side effects. The present study aimed to evaluate the effects of nanoformulated AEA (nf-AEA) on systolic blood pressure (SBP), behavior, and central/peripheral inflammatory, oxidative, and apoptotic state in spontaneously hypertensive rats (SHR).. Male rats were used, both Wistar Kyoto (WKY) and SHR (n = 10 per group), with/without treatment with nf-AEA (obtained by electrospraying) at a weekly dose of 5 mg/kg IP for 4 weeks. SBP was measured and behavioral tests were performed. Inflammatory/oxidative markers were quantified at the central (brain cortex) and peripheral (serum) level.. SHR showed hyperactivity, low anxiety, and high concentrations of central/peripheral inflammatory/oxidative markers, also higher apoptosis of brain cortical cells compared to WKY. As opposed to this group, treatment with nf-AEA in SHR significantly reduced SBP, peripheral/central inflammatory/oxidative makers, and central apoptosis. Nf-AEA also increased neuroprotective mechanisms mediated by intracellular heat shock protein 70 (Hsp70), which were attenuated in untreated SHR. Additionally, nf-AEA reversed the abnormal behaviors observed in SHR without producing central adverse effects.. Our results suggest protective properties of nf-AEA, both peripherally and centrally, through a signaling pathway that would involve the type I angiotensin II receptor, Wilms tumor transcription factor 1, Hsp70, and iNOS. Considering non-nf-AEA limitations, this nanoformulation could contribute to the development of new antihypertensive and behavioral disorder treatments associated with neuroinflammation. Topics: Animals; Antihypertensive Agents; Arachidonic Acids; Blood Pressure; Central Nervous System; Endocannabinoids; Hemodynamics; Hypertension; Male; Nanoparticles; Oxidative Stress; Peripheral Nervous System; Polyunsaturated Alkamides; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Signal Transduction | 2021 |
Beneficial Changes in Rat Vascular Endocannabinoid System in Primary Hypertension and under Treatment with Chronic Inhibition of Fatty Acid Amide Hydrolase by URB597.
Our study aimed to examine the effects of hypertension and the chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on vascular function and the endocannabinoid system in spontaneously hypertensive rats (SHR). Functional studies were performed on small mesenteric G3 arteries (sMA) and aortas isolated from SHR and normotensive Wistar Kyoto rats (WKY) treated with URB597 (1 mg/kg; twice daily for 14 days). In the aortas and sMA of SHR, endocannabinoid levels and cannabinoid CB Topics: Acetylcholine; Amidohydrolases; Animals; Aorta; Arachidonic Acids; Benzamides; Carbamates; Endocannabinoids; Essential Hypertension; Hypertension; Male; Mesenteric Arteries; Nitroprusside; Polyunsaturated Alkamides; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptors, Cannabinoid; Vasoconstriction; Vasodilation | 2021 |
Chronic Cannabidiol Administration Fails to Diminish Blood Pressure in Rats with Primary and Secondary Hypertension Despite Its Effects on Cardiac and Plasma Endocannabinoid System, Oxidative Stress and Lipid Metabolism.
We investigated the influence of cannabidiol (CBD) on blood pressure (BP) and heart rate (HR) in spontaneously (SHR) and deoxycorticosterone (DOCA-salt) hypertensive rats. Hypertension was connected with increases in cardiac and plasma markers of lipid peroxidation in both models, whereas cardiac endocannabinoid levels decreased in SHR and increased in DOCA-salt. CBD (10 mg/kg once a day for 2 weeks) did not modify BP and HR in hypertension but counteracted pro-oxidant effects. Moreover, it decreased cardiac or plasma levels of anandamide, 2-arachidonoylglycerol and oleoyl ethanolamide in DOCA-salt and inhibited the activity of fatty acid amide hydrolase (FAAH) in both models. In the respective normotensive control rats, CBD increased lipid peroxidation, free fatty acid levels and FAAH activity. In conclusion, chronic CBD administration does not possess antihypertensive activity in a model of primary and secondary (DOCA-salt) hypertension, despite its antioxidant effect. The latter may be direct rather than based on the endocannabinoid system. The unexpected CBD-related increase in lipid peroxidation in normotensive controls may lead to untoward effects; thus, caution should be kept if CBD is used therapeutically. Topics: Amidohydrolases; Animals; Arachidonic Acids; Blood Pressure; Cannabidiol; Endocannabinoids; Fatty Acids, Nonesterified; Heart; Heart Rate; Hypertension; Lipid Metabolism; Myocardium; Oxidative Stress; Polyunsaturated Alkamides; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptors, Cannabinoid | 2020 |
The FAAH Inhibitor URB597 Modulates Lipid Mediators in the Brain of Rats with Spontaneous Hypertension.
Hypertension is accompanied by oxidative stress, which can be modified by the functioning of the endocannabinoid system playing a prominent modulatory role in the brain. The present study tested whether chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor [3-(3-carbamoylphenyl) phenyl]N-cyclohexylcarbamate (URB597) to rats with primary hypertension (SHR) can modify redox balance and consequently brain phospholipid metabolism. Experiments were conducted using SHRs and normotensive control Wistar-Kyoto rats treated by intraperitoneal injection with URB597 for 14 days. The biochemical parameters were assayed in the rats' brains. Inhibition of FAAH activity by URB597 resulted in an increase in anandamide and GPR55 receptor levels, as well as a decrease in CB Topics: Animals; Arachidonic Acids; Benzamides; Brain; Carbamates; Disease Models, Animal; Endocannabinoids; Hypertension; Injections, Intraperitoneal; Male; Malondialdehyde; Oxidation-Reduction; Phospholipids; Polyunsaturated Alkamides; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, G-Protein-Coupled | 2020 |
Anandamide-nanoformulation obtained by electrospraying for cardiovascular therapy.
Anandamide (AEA), an endogenous cannabinoid, has a relevant antihypertensive effect. However, its cardioprotective role has been barely explored due to unfavorable physico-chemical properties and, sometimes, undesirable psychoactive effects. In this context, drug encapsulation in nanocarriers could overcome the limitations associated with the administration of AEA in free form. The aim of the present study was to encapsulate AEA in poly-ε-caprolactone/Pluronic® F127 nanoparticles (AEA/PCL/PF127 NPs) by means of electrospraying, to characterize their physico-chemical properties and cytocompatibility and to evaluate their effect in an in vivo model of cardiovascular remodeling caused by hypertension. AEA/PCL/PF127 NPs were characterized in terms of morphology, size, polydispersity, Z-potential, hydrophilicity, thermal and spectroscopic properties. Also, the encapsulation and loading efficiencies and in vitro release of AEA were analyzed. AEA/PCL/PF127 NPs (700-1000 nm) showed adequate cytocompatibility. For the cardiovascular remodeling studies, normotensive (WKY) and hypertensive (SHR) male rats were treated or not with AEA/PCL/PF127 NPs (5 mg/Kg, intraperitoneal injection) weekly for 1 month. Inflammatory markers and hemodynamic, structural and cardiac functional parameters were monitored. In SHR, the treatment with AEA/PCL/PF127 NPs reversed all altered cardiovascular markers and parameters (p < 0.05). Overall, nanoformulated AEA obtained by electrospraying proved to be effective for the treatment of hypertension and its comorbidities, especially cardiovascular remodeling. Topics: 3T3 Cells; Animals; Arachidonic Acids; C-Reactive Protein; Cardiotonic Agents; Cell Survival; Cytokines; Drug Compounding; Endocannabinoids; HSP70 Heat-Shock Proteins; Hypertension; Male; Mice; Nanoparticles; Poloxamer; Polyesters; Polyunsaturated Alkamides; Rats, Inbred SHR; Rats, Inbred WKY; Ventricular Remodeling | 2019 |
Hypertension and chronic inhibition of endocannabinoid degradation modify the endocannabinoid system and redox balance in rat heart and plasma.
The interaction between the endocannabinoid and ROS signaling systems has been demonstrated in different organs. Inhibitors of fatty acid amide hydrolase (FAAH), the key enzyme responsible for degradation of the endocannabinoid anandamide, are postulated to possess anti-hypertensive potential. Here, we compared the effects of hypertension and chronic FAAH inhibition by URB597 on the endocannabinoid system and redox balance in spontaneously hypertensive rats (SHR) and hypertensive deoxycorticosterone acetate (DOCA)-salt rats. Enhanced oxidative stress and lipid peroxidation were found in both hypertension models. Hypertension affected cardiac and plasma endocannabinoid systems in a model-dependent manner: anandamide and 2-arachidonoylglycerol levels decreased in SHR and increased in DOCA-salt. Cardiac CB Topics: Amidohydrolases; Animals; Arachidonic Acids; Benzamides; Carbamates; Desoxycorticosterone Acetate; Endocannabinoids; Glycerides; Heart; Hypertension; Male; Myocardium; Oxidation-Reduction; Oxidative Stress; Polyunsaturated Alkamides; Rats, Inbred SHR; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2 | 2018 |
Modulation by 17β-estradiol of anandamide vasorelaxation in normotensive and hypertensive rats: a role for TRPV1 but not fatty acid amide hydrolase.
Recent studies suggest that endocannabinoid signaling is modulated by 17β-estradiol (17Eβ) however it is unclear if this applies to the cardiovascular actions of anandamide, a major endocannabinoid. This study examined the in vitro effects of 17Eβ on vasorelaxation to anandamide in myograph-mounted small mesenteric arteries obtained from Wistar rats and Spontaneously Hypertensive Rats (SHRs) of both sexes. Treatment with 1μM 17Eβ but not its enantiomer 17Eα significantly enhanced relaxation to anandamide in male Wistar rats. This effect was independent of a functional endothelium but was blocked by the Transient Receptor Potential Vanilloid type 1 (TRPV1) receptor antagonist SB366791 (2μM) or prolonged treatment with the TRPV1 agonist capsaicin (10μM). A TRPV1-dependent potentiation by 17Eβ was also observed in male SHRs, but not in female Wistar rats or female SHRs. Whilst inhibition of anandamide hydrolysis by 1μM URB597 (an inhibitor of fatty acid amide hydrolase; FAAH) similarly augmented anandamide relaxation in male, but not female, Wistar rats and SHRs, URB597 did not affect the 17Eβ-induced potentiation. Female SHRs displayed a larger maximal relaxation to anandamide; however sex difference was not found in Wistar rats. We conclude that pharmacological levels of 17Eβ potentiate mesenteric relaxation to anandamide through mechanisms dependent on TRPV1 receptors but not FAAH-mediated hydrolysis in male Wistar rats and male SHRs. Sexual dimorphism was observed in the modulatory effects of 17Eβ and URB597, which does not necessarily lead to a greater anandamide response in female rats. Topics: Amidohydrolases; Animals; Arachidonic Acids; Blood Pressure; Capsaicin; Dose-Response Relationship, Drug; Endocannabinoids; Estradiol; Female; Hypertension; In Vitro Techniques; Male; Mesenteric Arteries; Polyunsaturated Alkamides; Rats; Rats, Wistar; Resorcinols; TRPV Cation Channels; Vasodilation | 2013 |
Decreased anandamide transporter activity and calcitonin gene-related peptide production in spontaneously hypertensive rats: role of angiotensin II.
In the present study, we investigated the role of angiotensin II in regulating the anandamide transporter activity and resultant calcitonin gene-related peptide (CGRP) production in spontaneously hypertensive rats (SHRs). Systolic blood pressure, plasma levels of anandamide, angiotensin II and CGRP, CGRP mRNA expression in dorsal root ganglion and anandamide transporter activity in peripheral blood lymphocytes were measured in SHRs treated with selective angiotensin II type 1 receptor antagonist losartan. Rat peripheral blood lymphocytes were isolated to examine the effect of exogenous angiotensin II on anandamide-induced CGRP mRNA expression, anandamide transporter activity and intracellular reactive oxygen species production in presence or absence of losartan and antioxidant n-acetyl-cysteine. In SHRs, the plasma level of angiotensin II and anandamide was elevated, but the anandamide transporter activity was attenuated concomitantly with decreased CGRP production. Treatment with losartan for 2weeks produced depressor effect, restored the reduced anandamide transporter activity, decreased the plasma anandamide level and increased the plasma level and mRNA expression of CGRP in SHRs. In cultured lymphocytes, up-regulation of CGRP mRNA expression by exogenous administration of anandamide was inhibited by anandamide transporter blocker and angiotensin II. Angiotensin II also inhibited the anandamide transporter activity concentration-dependently while increased intracellular reactive oxygen species production, which was reversed by pretreatment with losartan or n-acetyl-cysteine. The present findings suggest that angiotensin II plays a critical role in mediating the decrease in anandamide transporter activity and CGRP production in SHRs, which is likely due to activation angiotensin II type 1 receptor and resultant reactive oxygen species production. Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Antioxidants; Arachidonic Acids; Blood Pressure; Calcitonin Gene-Related Peptide; Endocannabinoids; Ganglia, Spinal; Hypertension; Losartan; Lymphocytes; Male; Membrane Transport Proteins; Polyunsaturated Alkamides; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Reactive Oxygen Species; RNA, Messenger; Up-Regulation | 2012 |
Circulating anandamide and blood pressure in patients with obstructive sleep apnea.
Obstructive sleep apnea chronically increases blood pressure through sympathetic nervous system activation. In animals, hypertension and sympathetic activity are restrained by cannabinoid receptor activation. Therefore, we hypothesized that increased blood pressure in patients with obstructive sleep apnea is associated with increased circulating endocannabinoid concentrations.. Arterial oxygen saturation and apnea/hypopnea episodes were recorded in 29 patients with normal glucose tolerance, 26 patients with type 2 diabetes mellitus, and 21 patients obese subjects without sleep apnea. We determined seated blood pressure, insulin, glucose, and high-sensitive C-reactive protein in the morning, and insulin sensitivity by euglycemic-hyperinsulinemic clamp the next day. Anandamide, the sum of 1-arachidonoylglycerol and 2-arachidonoylglycerol, and oleoylethanolamide were measured in plasma by liquid chromatography-tandem mass spectrometry.. Endocannabinoid concentrations in sleep apnea patients were increased compared to obese individuals without disordered nocturnal breathing. Correction for variables of obesity and insulin resistance almost completely abrogated this difference in endocannabinoids. Anandamide strongly correlated with blood pressure in sleep apnea patients (r = 0.60 for SBP and r = 0.58 for DBP, P < 0.001). In multivariate regression analysis, anandamide was a stronger determinant of blood pressure than sleep apnea severity, obesity, insulin resistance, and inflammation.. Obstructive sleep apnea patients show positive correlations between blood pressure and venous anandamide concentrations independent of confounding factors. Our data suggest a previously not recognized role of the endocannabinoid system for blood pressure regulation in patients with high risk for hypertension and cardiovascular disease. Topics: Aged; Arachidonic Acids; Biomarkers; Blood Pressure; Cardiovascular Diseases; Cross-Sectional Studies; Diabetes Mellitus, Type 2; Endocannabinoids; Female; Humans; Hypertension; Insulin Resistance; Male; Middle Aged; Obesity; Polyunsaturated Alkamides; Risk Factors; Sleep Apnea, Obstructive | 2012 |
Inhibitor of fatty acid amide hydrolase normalizes cardiovascular function in hypertension without adverse metabolic effects.
The enzyme fatty acid amide hydrolase (FAAH) catalyzes the in vivo degradation of the endocannabinoid anandamide, thus controlling its action at receptors. A novel FAAH inhibitor, AM3506, normalizes the elevated blood pressure and cardiac contractility of spontaneously hypertensive rats (SHR) without affecting these parameters in normotensive rats. These effects are due to blockade of FAAH and a corresponding rise in brain anandamide levels, resulting in CB₁ receptor-mediated decrease in sympathetic tone. The supersensitivity of SHR to CB₁ receptor-mediated cardiovascular depression is related to increased G protein coupling of CB₁ receptors. Importantly, AM3506 does not elicit hyperglycemia and insulin resistance seen with other FAAH inhibitors or in FAAH⁻/⁻ mice, which is related to its inability to inhibit FAAH in the liver due to rapid hepatic uptake and metabolism. This unique activity profile offers improved therapeutic value in hypertension. Topics: Alkanesulfonates; Amidohydrolases; Animals; Antihypertensive Agents; Arachidonic Acids; Brain; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Hypertension; Male; Mice; Mice, Knockout; Phenols; Polyunsaturated Alkamides; Rats; Receptor, Cannabinoid, CB1 | 2010 |
Effects of hypertension on vasorelaxation to endocannabinoids in vitro.
The hypotensive actions of methanandamide are enhanced in anaesthetised spontaneously hypertensive rats (SHR), which may be due to increased sensory nerve activity. We have now investigated in vitro the role of sensory nerves and other vasorelaxant mechanisms of anandamide in this model of hypertension, and in rats made hypertensive by chronic inhibition of nitric oxide (NO) synthase. Male SHR and Sprague-Dawley rats (given approximately 10 mg/kg/day N(G) nitro-L-arginine methyl ester (L-NAME) to drink for 4 weeks) were used. Vasorelaxant responses to anandamide and capsaicin were determined in perfused mesenteric arterial beds and thoracic aortic rings. The contributions of sensory nerves, NO, prostanoids, cannabinoid receptors and the endothelium in these responses were investigated. In mesenteric arterial beds from SHR, anandamide was less potent as a vasorelaxant, but in aortae caused greater maximal relaxations compared to controls. The reduced potency in the mesenteric arterial bed was accompanied by impaired NO-dependent relaxation. Pre-treatment with capsaicin prevented the enhancement of vasorelaxation by anandamide in mesenteric arterial beds from rats with L-NAME-induced hypertension. The reduced potency of anandamide in mesenteric arterial beds from SHR was due to reduced NO-dependent vasorelaxation, and provides no evidence for increased sensory nerve activity. The enhanced responses in the SHR aortae were endothelium-dependent. However, in L-NAME-induced hypertension the enhanced vasorelaxation to anandamide in the mesenteric vasculature was due to increased sensory nerve-mediated activity. In conclusion, the alterations in responses to anandamide in hypertension are dependent on the vessels studied and the model of hypertension. Topics: Animals; Aorta; Arachidonic Acids; Cannabinoid Receptor Modulators; Capsaicin; Carbachol; Endocannabinoids; Endothelium; Hypertension; Male; Mesenteric Arteries; Neurotransmitter Agents; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Polyunsaturated Alkamides; Prostaglandin-Endoperoxide Synthases; Rats; Rats, Inbred SHR; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Sensory Receptor Cells; TRPV Cation Channels; Vasodilation | 2009 |
Acute hypertension reveals depressor and vasodilator effects of cannabinoids in conscious rats.
The cardiovascular effects of cannabinoids can be influenced by anaesthesia and can differ in chronic hypertension, but the extent to which they are influenced by acute hypertension in conscious animals has not been determined.. We examined cardiovascular responses to intravenous administration of anandamide and the synthetic cannabinoid, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone (WIN55212-2), in conscious male Wistar rats made acutely hypertensive by infusion of angiotensin II (AII) and arginine vasopressin (AVP). Rats were chronically instrumented for measurement of arterial blood pressure and vascular conductances in the renal, mesenteric and hindquarters beds.. Anandamide dose-dependently decreased the mean arterial blood pressure of rats made hypertensive by AII-AVP infusion, but not normotensive rats. Interestingly, acute hypertension also revealed a hypotensive response to WIN55212-2, which caused hypertension in normotensive animals. The enhanced depressor effects of the cannabinoids in acute hypertension were associated with increased vasodilatation in hindquarters, renal and mesenteric vascular beds. Treatment with URB597, which inhibits anandamide degradation by fatty acid amide hydrolase, potentiated the depressor and mesenteric vasodilator responses to anandamide. Furthermore, haemodynamic responses to WIN55212-2, but not to anandamide, were attenuated by the CB(1) receptor antagonist, AM251 [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophen yl)-4-methyl-1H-pyrazole-3-carboxamide].. These results broadly support the literature showing that the cardiovascular effects of cannabinoids can be exaggerated in hypertension, but highlight the involvement of non-CB(1) receptor-mediated mechanisms in the actions of anandamide. Topics: Acute Disease; Amidohydrolases; Animals; Arachidonic Acids; Benzamides; Benzoxazines; Blood Pressure; Cannabinoids; Carbamates; Consciousness; Endocannabinoids; Hindlimb; Hypertension; Infusions, Intravenous; Injections, Intravenous; Male; Morpholines; Naphthalenes; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Renal Circulation; Splanchnic Circulation; Vascular Resistance; Vasodilation | 2009 |
Role of anandamide transporter in regulating calcitonin gene-related peptide production and blood pressure in hypertension.
To explore the role of anandamide (AEA) transporter in regulating calcitonin gene-related peptide (CGRP) production and blood pressure.. Plasma levels of AEA, CGRP, asymmetric dimethylarginine (ADMA) and nitric oxide in patients with essential hypertension, spontaneously hypertensive rats (SHRs) and 2 kidney 1 clip hypertensive rats and the CGRP mRNA expression in dorsal root ganglion of rats were measured. Peripheral blood lymphocytes were isolated to examine the AEA transporter activity, the role of AEA transporter in regulating CGRP mRNA expression or the effect of exogenous ADMA on AEA transporter activity. In both hypertensive patients and SHRs, the plasma level of AEA was elevated, but the AEA transporter activity was attenuated concomitantly with decreased CGRP production. Moreover, plasma ADMA level in SHRs was elevated accompanied by decreased nitric oxide level. By contrast, the plasma AEA level was elevated accompanied by increased CGRP production in 2 kidney 1 clip hypertensive rats, and there were no significant changes in plasma levels of ADMA, nitric oxide and the AEA transporter activity. In vitro, exogenous administration of AEA upregulated CGRP mRNA expression in lymphocytes, which was inhibited by AEA transporter blocker, AM404, and the AEA transporter activity was reduced by ADMA.. Decreased plasma CGRP level in patients with essential hypertension or SHRs is likely due to the reduced AEA transporter activity, and the increased ADMA level may account for the reduced AEA transporter activity. Topics: Animals; Arachidonic Acids; Arginine; Base Sequence; Blood Pressure; Calcitonin Gene-Related Peptide; Carrier Proteins; Case-Control Studies; DNA Primers; Endocannabinoids; Ganglia, Spinal; Humans; Hypertension; Hypertension, Renovascular; In Vitro Techniques; Lymphocytes; Male; Polyunsaturated Alkamides; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Rats, Wistar; RNA, Messenger | 2009 |
Effects of chronic nitric oxide synthase inhibition on the cardiovascular responses to cannabinoids in vivo and in vitro.
Since the vasorelaxant potency of the endocannabinoid anandamide is enhanced in perfused mesenteric vascular beds from rats made hypertensive by chronic inhibition of NO synthase (L-NAME in drinking water), we hypothesized that in vivo, anandamide-induced vasodilatation would be similarly enhanced in L-NAME-treated animals.. Male Sprague-Dawley rats were given L-NAME in drinking water (7.5 mg kg(-1) day(-1)) for 4 weeks. Relaxant effects of anandamide were measured in perfused mesenteric vascular beds and in isolated small mesenteric arteries. Renal, mesenteric and hindquarters haemodynamic responses to anandamide, methanandamide, the synthetic cannabinoid agonist WIN-55212-2 and the cannabinoid receptor antagonist AM251 were assessed in conscious, chronically-instrumented rats.. Vasorelaxant responses to anandamide were enhanced in the perfused mesentery but not in isolated mesenteric resistance vessels. In vivo, anandamide caused vasodilatation only in the hindquarters vascular bed and only in control rats. Methanandamide caused a late-onset (40 min after administration) tachycardia, mesenteric and hindquarters vasoconstriction, and renal vasodilatation, which did not differ between control and L-NAME-treated rats. AM251 had no effect on resting blood pressure in control or L-NAME-treated rats and WIN55212-2 caused pressor and renal and mesenteric vasoconstrictor responses, with hindquarters vasodilatation in both groups of animals.. The results provide no in vivo evidence for enhanced vasodilator responses to cannabinoids, or up-regulation of endocannabinoids or their receptor activity, following chronic NO synthase inhibition. Topics: Animals; Arachidonic Acids; Benzoxazines; Blood Pressure; Cannabinoids; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Heart Rate; Hypertension; Male; Mesenteric Arteries; Morpholines; Muscle, Skeletal; Naphthalenes; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Renal Circulation; Splanchnic Circulation; Time Factors; Vascular Resistance; Vasoconstriction; Vasodilation; Vasodilator Agents | 2007 |
Endocannabinoid regulates blood pressure via activation of the transient receptor potential vanilloid type 1 in Wistar rats fed a high-salt diet.
This study was designed to examine the role of the endocannabinoids in blood pressure regulation during high sodium (HS) intake. HS (4% Na+ by weight) intake for 3 weeks increased baseline mean arterial pressure (MAP, mm Hg) compared with normal sodium (NS, 0.4% Na+ by weight)-treated male Wistar rats. Capsazepine (3 mg/kg), a selective transient receptor potential vanilloid type 1 (TRPV1) antagonist, caused a greater increase in MAP (mm Hg) in HS-treated compared with NS-treated rats (13+/-3 versus 4+/-2, p<0.05), whereas calcitonin gene-related peptide (CGRP) dose-dependently decreased MAP in both HS- and NS-treated rats with a more profound effect in the former. HS increased plasma anandamide levels analyzed by liquid chromatography/electrospray tandem mass spectrometry (NS, 2.40+/-0.31 versus HS, 4.05+/-0.47 pmol/ml, p<0.05) and plasma CGRP levels determined by radioimmunoassay (NS, 36.6+/-3.8 versus HS, 55.7+/-6.4 pg/ml, p<0.05). Methanandamide, a metabolically stable analog of anandamide, caused a greater CGRP release in mesenteric arteries isolated from HS-treated compared with NS-treated rats. Western blot showed that expression of receptor activity-modifying protein 1, a subunit of the CGRP receptor, in mesenteric arteries was greater in HS-treated compared with NS-treated rats. These results show that HS intake increases production of anandamide, which may serve as an endovanilloid to activate TRPV1, leading to release of CGRP to blunt salt-induced increases in blood pressure. These data support the notion that TRPV1 may act as a molecular target for salt-induced elevation of endovanilloid compounds to regulate blood pressure. Topics: Animals; Arachidonic Acids; Blood Pressure; Calcitonin Gene-Related Peptide; Cannabinoid Receptor Modulators; Capsaicin; Endocannabinoids; Hypertension; Male; Polyunsaturated Alkamides; Rats; Rats, Wistar; Sodium Chloride, Dietary; TRPV Cation Channels | 2007 |
Cardiovascular effects of cannabinoids in conscious spontaneously hypertensive rats.
In anaesthetized spontaneously hypertensive rats (SHR), there is evidence for up-regulation of cannabinoid (CB1) receptors: antagonism of CB1 receptors causes a rise in blood pressure, and administration of the endocannabinoid, anandamide, or inhibition of anandamide degradation causes hypotension. These findings have led to the suggestion that the endocannabinoid system may be a therapeutic target in hypertension. However, since the cardiovascular responses to cannabinoids are substantially influenced by anaesthesia, the purpose of this study was to assess regional haemodynamic responses to cannabinoid receptor stimulation and inhibition in conscious SHR.. Cardiovascular responses to i.v. administration of anandamide, the cannabinoid receptor agonist, WIN 55212-2, and the CB(1) receptor antagonist, AM 251, were measured in male SHR, Wistar Kyoto rats and outbred Wistar rats, chronically instrumented for recording renal, mesenteric and hindquarters haemodynamics in the conscious, freely-moving state.. Hypotensive responses to anandamide and WIN 55212-2 only occurred in SHR, but these were relatively modest and not associated with CB1 receptor-mediated vasodilatation. In SHR only, anandamide caused bradycardia, which was inhibited by AM 251. Furthermore, a pressor response to CB1 receptor antagonism occurred only in SHR, but was not associated with vasoconstriction. Moreover, there was some evidence for CB1 receptor-mediated vasoconstrictor actions of anandamide in SHR, which was not seen in the normotensive strains.. The results are consistent with activation of CB1 receptors in SHR by endogenous ligands exerting an antihypertensive effect, but the findings do not indicate enhanced CB1 receptor-mediated vasodilator mechanisms in SHR. Topics: Animals; Arachidonic Acids; Benzoxazines; Blood Pressure; Cannabinoids; Cardiovascular System; Consciousness; Endocannabinoids; Heart Rate; Hindlimb; Hypertension; Infusions, Intravenous; Injections, Intravenous; Male; Morpholines; Naphthalenes; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Rats, Wistar; Receptor, Cannabinoid, CB1; Renal Circulation; Species Specificity; Splanchnic Circulation; Vascular Resistance; Vasodilation | 2007 |
Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension.
Endocannabinoids are novel lipid mediators with hypotensive and cardiodepressor activity. Here, we examined the possible role of the endocannabinergic system in cardiovascular regulation in hypertension.. In spontaneously hypertensive rats (SHR), cannabinoid-1 receptor (CB1) antagonists increase blood pressure and left ventricular contractile performance. Conversely, preventing the degradation of the endocannabinoid anandamide by an inhibitor of fatty acid amidohydrolase reduces blood pressure, cardiac contractility, and vascular resistance to levels in normotensive rats, and these effects are prevented by CB1 antagonists. Similar changes are observed in 2 additional models of hypertension, whereas in normotensive control rats, the same parameters remain unaffected by any of these treatments. CB1 agonists lower blood pressure much more in SHR than in normotensive Wistar-Kyoto rats, and the expression of CB1 is increased in heart and aortic endothelium of SHR compared with Wistar-Kyoto rats.. We conclude that endocannabinoids tonically suppress cardiac contractility in hypertension and that enhancing the CB1-mediated cardiodepressor and vasodilator effects of endogenous anandamide by blocking its hydrolysis can normalize blood pressure. Targeting the endocannabinoid system offers novel therapeutic strategies in the treatment of hypertension. Topics: Amidohydrolases; Angiotensin II; Animals; Arachidonic Acids; Benzamides; Benzyl Compounds; Blood Pressure; Camphanes; Carbamates; Dronabinol; Endocannabinoids; Endothelium, Vascular; Hypertension; Male; Models, Cardiovascular; Myocardial Contraction; Myocardium; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Inbred Dahl; Rats, Inbred SHR; Rats, Inbred WKY; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Rimonabant; Up-Regulation; Vascular Resistance; Vasodilation; Ventricular Function, Left | 2004 |
Anandamide-induced depressor effect in spontaneously hypertensive rats: role of the vanilloid receptor.
To test the hypothesis that activation of the vanilloid receptor (VR1) contributes to the anandamide-induced depressor effect in spontaneously hypertensive rats (SHR), we used a selective VR1 antagonist capsazepine (CAPZ) and a selective cannabinoid type 1 receptor antagonist SR141716A in conjunction with a VR1 agonist capsaicin in both SHR and Wistar-Kyoto rats (WKY). Mean arterial pressure was increased in SHR compared with WKY (P<0.05). Intravenous administration of capsaicin caused a greater depressor response in SHR compared with WKY (P<0.05), which was blocked by approximately 60% by CAPZ (P<0.05) in SHR only. Methanandamide caused a similar greater depressor response (P<0.05), which was blocked by approximately 50% and 60% by CAPZ and SR141716A, respectively, in SHR (P<0.05) but not in WKY. Radioimmunoassay showed that methanandamide increased plasma calcitonin gene-related peptide (CGRP) levels from baseline in both SHR and WKY (P<0.05), with no difference between 2 strains. Western blot showed that protein expression for the calcitonin receptor-like receptor-but not receptor activity modifying protein 1, VR1, and cannabinoid type 1 receptors-was increased in mesenteric resistance arteries in SHR compared with WKY (P<0.05). These data indicate that in addition to activation of cannabinoid type 1, anandamide may serve as an endogenous compound to stimulate VR1, leading to a decrease in blood pressure via CGRP release from sensory nerve terminals. Increased mesenteric CGRP receptor expression in SHR may account for increased sensitivity of blood pressure to anandamide and may serve as a compensatory response to buffer the increase in blood pressure in SHR. Topics: Animals; Arachidonic Acids; Blood Pressure; Calcitonin Gene-Related Peptide; Capsaicin; Endocannabinoids; Hypertension; Male; Mesenteric Arteries; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptors, Cannabinoid; Receptors, Drug; Rimonabant | 2003 |
Cardiovascular effects of anandamide in anesthetized and conscious normotensive and hypertensive rats.
We previously showed that in anesthetized rats anandamide elicits bradycardia and a triphasic blood pressure response: transient hypotension secondary to a vagally mediated bradycardia, followed by a brief pressor and prolonged depressor response, the latter two effects being similar to those of delta 9-tetrahydrocannabinol (THC). The prolonged depressor but not the pressor response was reduced after alpha-adrenergic receptor blockade or cervical spinal cord transection and was inhibited by the cannabinoid type 1 (CB1) receptor antagonist SR141716A, suggesting CB1 receptor-mediated sympathoinhibition as the underlying mechanism. Here we examined the relationship between sympathetic tone and the cardiovascular effects of anandamide by testing these effects in both conscious and anesthetized, normotensive and spontaneously hypertensive rats. In urethane-anesthetized normotensive rats, SR141716A inhibited the prolonged depressor and bradycardic effects of anandamide and THC with similar potency, whereas it did not affect the pressor response to either agent. Anadamide caused similar hypotension in spontaneously breathing and in paralyzed, mechanically ventilated rats, suggesting that the hypotension is not secondary to respiratory effects. In conscious normotensive rats, anandamide elicited transient vagal activation and a brief pressor response, but the prolonged hypotensive component was absent. SR141716A potentiated and prolonged the brief pressor response to anandamide, suggesting that the depressor response may have been masked by an increased pressor response. All three phases of the anadamide response were present in both anesthetized and conscious spontaneously hypertensive rats, and the hypotensive component, inhibited by SR141716A in both, was more prolonged in the absence (> 50 minutes) than the presence (10 to 15 minutes) of anesthesia. We conclude that anandamide causes a non-CB1 receptor-mediated pressor and a CB1 receptor-mediated prolonged depressor response. The depressor response can be elicited in both conscious and anesthetized animals, but its magnitude depends on preexisting sympathetic tone. Topics: Anesthesia; Animals; Arachidonic Acids; Blood Pressure; Calcium Channel Blockers; Dose-Response Relationship, Drug; Endocannabinoids; Heart Rate; Hypertension; Injections, Intravenous; Male; Polyunsaturated Alkamides; Rats; Rats, Inbred SHR; Rats, Sprague-Dawley | 1997 |