anandamide has been researched along with Hyperglycemia* in 4 studies
4 other study(ies) available for anandamide and Hyperglycemia
Article | Year |
---|---|
Effects of chronic exercise on the endocannabinoid system in Wistar rats with high-fat diet-induced obesity.
The endocannabinoid system is dysregulated during obesity in tissues involved in the control of food intake and energy metabolism. We examined the effect of chronic exercise on the tissue levels of endocannabinoids (eCBs) and on the expression of genes coding for cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) (Cnr1 and Cnr2, respectively) in the subcutaneous (SAT) and visceral adipose tissues and in the soleus and extensor digitorim longus (EDL) muscles, in rats fed with standard or high-fat diet. Twenty-eight male Wistar rats were placed on high-fat diet or standard diet (HFD and Ctl groups, respectively) during 12 weeks whereafter half of each group was submitted to an exercise training period of 12 weeks (HFD + training and Ctl + training). Tissue levels of eCBs were measured by LC-MS while expressions of genes coding for CB1 and CB2 receptors were investigated by qPCR. High-fat diet induced an increase in anandamide (AEA) levels in soleus and EDL (p < 0.02). In soleus of the HFD group, these changes were accompanied by elevated Cnr1 messenger RNA (mRNA) levels (p < 0.05). In EDL, exercise training allowed to reduce significantly this diet-induced AEA increase (p < 0.005). 2-Arachidonoylglycerol (2-AG) levels were decreased and increased by high-fat diet in SAT and EDL, respectively (p < 0.04), but not affected by exercise training. Unlike the HFD + training group, 2-AG levels in soleus were also decreased in the HFD group compared to Ctl (p < 0.04). The levels of eCBs and Cnr1 expression are altered in a tissue-specific manner following a high-fat diet, and chronic exercise reverses some of these alterations. Topics: Amides; Animals; Arachidonic Acids; Body Composition; Diet, High-Fat; Endocannabinoids; Ethanolamines; Gene Expression Regulation; Glycerides; Hyperglycemia; Intra-Abdominal Fat; Male; Motor Activity; Muscle, Skeletal; Obesity; Oleic Acids; Organ Specificity; Palmitic Acids; Polyunsaturated Alkamides; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Subcutaneous Fat, Abdominal; TRPV Cation Channels; Weight Gain | 2016 |
Acute activation of cannabinoid receptors by anandamide reduces gastrointestinal motility and improves postprandial glycemia in mice.
The endocannabinoid system (ECS) is associated with an alteration of glucose homeostasis dependent on cannabinoid receptor-1 (CB1R) activation. However, very little information is available concerning the consequences of ECS activation on intestinal glucose absorption. Mice were injected intraperitoneally with anandamide, an endocannabinoid binding both CB1R and CB2R. We measured plasma glucose and xylose appearance after oral loading, gastrointestinal motility, and glucose transepithelial transport using the everted sac method. Anandamide improved hyperglycemia after oral glucose charge whereas glucose clearance and insulin sensitivity were impaired, pointing out some gastrointestinal events. Plasma xylose appearance was delayed in association with a strong decrease in gastrointestinal transit, while anandamide did not alter transporter-mediated glucose absorption. Interestingly, transit was nearly normalized by coinjection of SR141716 and AM630 (CB1R and CB2R antagonist, respectively), and AM630 also reduced the delay of plasma glucose appearance induced by anandamide. When gastric emptying was bypassed by direct glucose administration in the duodenum, anandamide still reduced plasma glucose appearance in wild-type but not in CB1R(-/-) mice. In conclusion, our findings demonstrated that acute activation of intestinal ECS reduced postprandial glycemia independently on intestinal glucose transport but rather inhibiting gastric emptying and small intestine motility and strongly suggest the involvement of both CB1R and CB2R. Topics: Animals; Arachidonic Acids; Blood Glucose; Endocannabinoids; Gastrointestinal Motility; Gastrointestinal Transit; Hyperglycemia; Indoles; Male; Mice; Mice, Inbred C57BL; Piperidines; Polyunsaturated Alkamides; Postprandial Period; Pyrazoles; Rats; Rats, Wistar; Receptors, Cannabinoid; Reverse Transcriptase Polymerase Chain Reaction; Rimonabant | 2015 |
Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes.
Type 2 diabetes mellitus (T2DM) progresses from compensated insulin resistance to beta cell failure resulting in uncompensated hyperglycemia, a process replicated in the Zucker diabetic fatty (ZDF) rat. The Nlrp3 inflammasome has been implicated in obesity-induced insulin resistance and beta cell failure. Endocannabinoids contribute to insulin resistance through activation of peripheral CB1 receptors (CB₁Rs) and also promote beta cell failure. Here we show that beta cell failure in adult ZDF rats is not associated with CB₁R signaling in beta cells, but rather in M1 macrophages infiltrating into pancreatic islets, and that this leads to activation of the Nlrp3-ASC inflammasome in the macrophages. These effects are replicated in vitro by incubating wild-type human or rodent macrophages, but not macrophages from CB₁R-deficient (Cnr1(-/-)) or Nlrp3(-/-) mice, with the endocannabinoid anandamide. Peripheral CB₁R blockade, in vivo depletion of macrophages or macrophage-specific knockdown of CB₁R reverses or prevents these changes and restores normoglycemia and glucose-induced insulin secretion. These findings implicate endocannabinoids and inflammasome activation in beta cell failure and identify macrophage-expressed CB₁R as a therapeutic target in T2DM. Topics: Animals; Apoptosis; Arachidonic Acids; Cannabinoid Receptor Agonists; Carrier Proteins; Cell Line; Cell Survival; Diabetes Mellitus, Type 2; Endocannabinoids; Humans; Hyperglycemia; Inflammasomes; Insulin Resistance; Insulin-Secreting Cells; Islets of Langerhans; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; NLR Family, Pyrin Domain-Containing 3 Protein; Obesity; Polyunsaturated Alkamides; Rats; RNA Interference; RNA, Small Interfering | 2013 |
Endocannabinoid dysregulation in the pancreas and adipose tissue of mice fed with a high-fat diet.
In mice, endocannabinoids (ECs) modulate insulin release from pancreatic beta-cells and adipokine expression in adipocytes through cannabinoid receptors. Their pancreatic and adipose tissue levels are elevated during hyperglycemia and obesity, but the mechanisms underlying these alterations are not understood.. We assessed in mice fed for up to 14 weeks with a standard or high-fat diet (HFD): (i) the expression of cannabinoid receptors and EC biosynthesizing enzymes (N-acyl-phosphatidyl-ethanolamine-selective phospholipase D (NAPE-PLD) and DAGLalpha) and degrading enzymes (fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL)) in pancreatic and adipose tissue sections by immunohistochemical staining; (ii) the amounts, measured by liquid chromatography-mass spectrometry, of the ECs, 2-AG, and anandamide (AEA).. Although CB(1) receptors and biosynthetic enzymes were found mostly in alpha-cells, degrading enzymes were identified in beta-cells. Following HFD, staining for biosynthetic enzymes in beta-cells and lower staining for FAAH were observed together with an increase of EC pancreatic levels. While we observed no diet-induced change in the intensity of the staining of EC metabolic enzymes in the mesenteric visceral fat, a decrease in EC concentrations was accompanied by lower and higher staining of biosynthesizing enzymes and FAAH, respectively, in the subcutaneous fat. No change in cannabinoid receptor staining was observed following HFD in any of the analyzed tissues.. We provide unprecedented information on the distribution of EC metabolic enzymes in the pancreas and adipose organ, where their aberrant expression during hyperglycemia and obesity contribute to dysregulated EC levels. Topics: Adipose Tissue; Age Factors; Amidohydrolases; Animals; Arachidonic Acids; Blood Glucose; Body Weight; Cannabinoid Receptor Modulators; Chromatography, Liquid; Dietary Fats; Disease Models, Animal; Endocannabinoids; Fluorescent Antibody Technique; Glycerides; Hyperglycemia; Lipoprotein Lipase; Male; Mass Spectrometry; Mice; Mice, Inbred C57BL; Monoacylglycerol Lipases; Obesity; Pancreas; Phospholipase D; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Time Factors | 2008 |