anandamide has been researched along with Epilepsy--Temporal-Lobe* in 3 studies
3 other study(ies) available for anandamide and Epilepsy--Temporal-Lobe
Article | Year |
---|---|
Cerebrospinal fluid levels of the endocannabinoid anandamide are reduced in patients with untreated newly diagnosed temporal lobe epilepsy.
The endocannabinoid system is involved in excitatory/inhibitory balance mechanisms within the central nervous system (CNS). Growing evidence shows that its perturbation leads to development of epileptic seizures in experimental models, thus indicating that endocannabinoids play an intrinsic protective role in suppressing pathologic neuronal excitability. Experimental data also demonstrate that the endocannabinoid anandamide (AEA) can antagonize epileptic discharges in hippocampal tissue. The objective of our study was to measure endocannabinoids levels in the cerebrospinal fluid (CSF) of drug-naive patients affected by temporal lobe epilepsy (TLE).. We measured the levels of both AEA and the other endocannabinoid, 2-arachidonoylglycerol (2-AG), in the CSF of drug-naive patients with TLE.. A significant reduction of AEA was found in the CSF of patients with compared with healthy controls (epileptic patients = 2.55 +/- 1.78 pmol/ml; healthy controls = 11.65 +/- 7.53 pmol/ml; n = 9 for both groups, p < 0.01). 2-AG levels, however, were not affected (epileptic patients = 209.5 +/- 146.56; healthy controls = 159.6 +/- 110.2) (n = 6 for both groups, p = 0.48).. Our findings seem to be consistent with experimental evidence demonstrating a significant prevention of epileptic seizures induced by endocannabinoids in models of epilepsy. Furthermore, they support the hypothesis that AEA may be involved in its pathogenesis, suggesting a hypothetical primary impairment of the endocannabinoid system in untreated TLE. The actual role of this in vivo dysregulation still remains unclear. Topics: Adolescent; Adult; Aged; Aged, 80 and over; Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Disease Models, Animal; Endocannabinoids; Epilepsy; Epilepsy, Temporal Lobe; Female; Glycerides; Hippocampus; Humans; Male; Middle Aged; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2 | 2010 |
Effects of TRPV1 activation on synaptic excitation in the dentate gyrus of a mouse model of temporal lobe epilepsy.
Temporal lobe epilepsy (TLE) is a condition characterized by an imbalance between excitation and inhibition in the temporal lobe. Hallmarks of this change are axon sprouting and accompanying synaptic reorganization in the temporal lobe. Synthetic and endogenous cannabinoids have variable therapeutic potential in treating intractable temporal lobe epilepsy, in part because cannabinoid ligands can bind multiple receptor types. This study utilized in vitro electrophysiological methods to examine the effect of transient receptor potential vanilloid type 1 (TRPV1) activation in dentate gyrus granule cells in a murine model of TLE. Capsaicin, a selective TRPV1 agonist had no measurable effect on overall synaptic input to granule cells in control animals, but significantly enhanced spontaneous and miniature EPSC frequency in mice with TLE. Exogenous application of anandamide, an endogenous cannabinoid that acts at both TRPV1 and cannabinoid type 1 receptors (CB1R), also enhanced glutamate release in the presence of a CB1R antagonist. Anandamide reduced the EPSC frequency when TRPV1 were blocked with capsazepine. Western blot analysis of TRPV1 receptor indicated protein expression was significantly greater in the dentate gyrus of mice with TLE compared with control mice. This study indicates that a prominent cannabinoid agonist can increase excitatory circuit activity in the synaptically reorganized dentate gyrus of mice with TLE by activating TRPV1 receptors, and suggests caution in designing anticonvulsant therapy based on modulating the endocannabinoid system. Topics: Animals; Anticonvulsants; Arachidonic Acids; Cannabinoid Receptor Modulators; Capsaicin; Dentate Gyrus; Disease Models, Animal; Drug Design; Endocannabinoids; Epilepsy, Temporal Lobe; Excitatory Postsynaptic Potentials; Male; Mice; Mice, Inbred Strains; Mossy Fibers, Hippocampal; Muscarinic Agonists; Organ Culture Techniques; Patch-Clamp Techniques; Pilocarpine; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Sensory System Agents; Synaptic Transmission; TRPV Cation Channels | 2010 |
Cannabinoid-mediated inhibition of recurrent excitatory circuitry in the dentate gyrus in a mouse model of temporal lobe epilepsy.
Temporal lobe epilepsy (TLE) is a neurological condition associated with neuron loss, axon sprouting, and hippocampal sclerosis, which results in modified synaptic circuitry. Cannabinoids appear to be anti-convulsive in patients and animal models of TLE, but the mechanisms of this effect are not known. A pilocarpine-induced status epilepticus mouse model of TLE was used to study the effect of cannabinoid agonists on recurrent excitatory circuits of the dentate gyrus using electrophysiological recordings in hippocampal slices isolated from control mice and mice with TLE. Cannabinoid agonists WIN 55,212-2, anandamide (AEA), or 2-arachydonoylglycerol (2-AG) reduced the frequency of spontaneous and tetrodotoxin-resistant excitatory postsynaptic currents (EPSCs) in mice with TLE, but not in controls. WIN 55,212-2 also reduced the frequency of EPSCs evoked by glutamate-photolysis activation of other granule cells in epileptic mice. Secondary population discharges evoked after antidromic electrical stimulation of mossy fibers in the hilus were also attenuated by cannabinoid agonists. Agonist effects were blocked by the cannabinoid type 1 receptor (CB1R) antagonist AM251. No change in glutamate release was observed in slices from mice that did not undergo status epilepticus. Western blot analysis suggested an up-regulation of CB1R in the dentate gyrus of animals with TLE. These findings indicate that activation of CB1R present on nerve terminals can suppress recurrent excitation in the dentate gyrus of mice with TLE. This suggests a mechanism for the anti-convulsive role of cannabinoids aimed at modulating receptors on synaptic terminals expressed de novo after epileptogenesis. Topics: Action Potentials; Animals; Arachidonic Acids; Blotting, Western; Cannabinoids; Dentate Gyrus; Disease Models, Animal; Endocannabinoids; Epilepsy, Temporal Lobe; Excitatory Postsynaptic Potentials; Glutamic Acid; Male; Mice; Mossy Fibers, Hippocampal; Photolysis; Pilocarpine; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Status Epilepticus; Synapses | 2010 |