anandamide and Endotoxemia

anandamide has been researched along with Endotoxemia* in 4 studies

Trials

1 trial(s) available for anandamide and Endotoxemia

ArticleYear
Low-fat yogurt consumption reduces biomarkers of chronic inflammation and inhibits markers of endotoxin exposure in healthy premenopausal women: a randomised controlled trial.
    The British journal of nutrition, 2017, Volume: 118, Issue:12

    The anti-inflammatory mechanisms of low-fat dairy product consumption are largely unknown. The objective of this study was to determine whether low-fat yogurt reduces biomarkers of chronic inflammation and endotoxin exposure in women. Premenopausal women (BMI 18·5-27 and 30-40 kg/m2) were randomised to consume 339 g of low-fat yogurt (yogurt non-obese (YN); yogurt obese (YO)) or 324 g of soya pudding (control non-obese; control obese (CO)) daily for 9 weeks (n 30/group). Fasting blood samples were analysed for IL-6, TNF-α/soluble TNF II (sTNF-RII), high-sensitivity C-reactive protein, 2-arachidonoyl glycerol, anandamide, monocyte gene expression, soluble CD14 (sCD14), lipopolysaccharide (LPS), LPS binding protein (LBP), IgM endotoxin-core antibody (IgM EndoCAb), and zonulin. BMI, waist circumference and blood pressure were also determined. After 9-week yogurt consumption, YO and YN had decreased TNF-α/sTNFR-RII. Yogurt consumption increased plasma IgM EndoCAb regardless of obesity status. sCD14 was not affected by diet, but LBP/sCD14 was lowered by yogurt consumption in both YN and YO. Yogurt intervention increased plasma 2-arachidonoylglycerol in YO but not YN. YO peripheral blood mononuclear cells expression of NF-κB inhibitor α and transforming growth factor β1 increased relative to CO at 9 weeks. Other biomarkers were unchanged by diet. CO and YO gained approximately 0·9 kg in body weight. YO had 3·6 % lower diastolic blood pressure at week 3. Low-fat yogurt for 9 weeks reduced biomarkers of chronic inflammation and endotoxin exposure in premenopausal women compared with a non-dairy control food. This trial was registered as NCT01686204.

    Topics: Acute-Phase Proteins; Adult; Anthropometry; Arachidonic Acids; Biomarkers; C-Reactive Protein; Carrier Proteins; Chronic Disease; Cytokines; Diet; Dietary Fats; Endocannabinoids; Endotoxemia; Endotoxins; Female; Glycerides; Humans; Immunoglobulin M; Inflammation; Leukocytes, Mononuclear; Membrane Glycoproteins; Middle Aged; NF-kappa B; Obesity; Polyunsaturated Alkamides; Yogurt; Young Adult

2017

Other Studies

3 other study(ies) available for anandamide and Endotoxemia

ArticleYear
Systematic evaluation of nitric oxide, tetrahydrobiopterin, and anandamide levels in a porcine model of endotoxemia.
    Journal of anesthesia, 2008, Volume: 22, Issue:3

    Using a lipopolysaccharide (LPS)-treated porcine model, we examined: (1) whether nitric oxide (NO), anandamide, and tetrahydrobiopterin (BH4) increased or not in early endotoxic shock; and (2) the location of the major site of production of these molecules, by comparing their concentrations in arteries and the portal and hepatic veins.. Ten pigs received an infusion of LPS at 1.7 microg x kg(-1)x h(-1) via the portal vein for 240 min. Consecutive changes in systemic hemodynamics, hepatosplanchnic circulation, and oxygen delivery were measured. Furthermore, the variable changes in the concentrations of nitrite and nitrate (NOx), anandamide, and BH4 were measured. To access the effects of surgery, anesthesia, and fluid management on BH4, an experiment without LPS infusion was performed in two other animals.. Mean arterial pressure and cardiac index started to decrease at 60 min after LPS infusion. However, systemic vascular resistance remained unchanged. Total hepatic blood flow and hepatic oxygen delivery also decreased significantly. NOx and anandamide did not change during LPS infusion. BH4 values did not change without LPS infusion. However, BH4 values increased significantly in the arterial, portal, and hepatic circulation during LPS infusion, especially in the hepatic vein (from 136.8 +/- 27.5 to 281.3 +/- 123.2 mol/ml; P < 0.01).. Our data suggest that the BH4 values were significantly increased in several organs, especially in the liver during endotoxic shock. Impaired cardiac output and decreased blood pressure appeared in the early phase of porcine endotoxemia. Longer-term observation of these parameters after LPS treatment should be performed as the next step in future studies.

    Topics: Animals; Arachidonic Acids; Biopterins; Disease Models, Animal; Endocannabinoids; Endotoxemia; Hemodynamics; Lactic Acid; Liver Circulation; Male; Nitric Oxide; Polyunsaturated Alkamides; Portal System; Swine

2008
Increases in vanilloid TRPV1 receptor protein and CGRP content during endotoxemia in rats.
    European journal of pharmacology, 2007, Jul-02, Volume: 566, Issue:1-3

    The aim of the present study was to determine whether the transient receptor potential vanilloid (TRPV1) receptor protein as well as the calcitonin gene-related peptide (CGRP) content could be enhanced after the i.p. administration of 5 mg/kg lipopolysaccharide (LPS) to Sprague-Dawley rats. In tongue tissue, used as a representative model of TRPV1 receptors expression, there was a significant increase in the abundance of TRPV1 receptor protein 6 h after LPS administration. In mesenteric arteries, the density of the CGRP-positive nerves as well as the release of CGRP induced by 10 microM anandamide was also significantly increased 6 h after LPS administration. The relaxant responses induced by anandamide in mesenteric beds isolated from either untreated or LPS-treated rats were abolished after a 2 h exposure to 10 microM capsaicin. Moreover, anandamide-induced relaxations of untreated mesenteries were potentiated by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 0.1 microM), but not by its inactive analogue 4alpha-phorbol (0.1 microM). The potentiation of anandamide effects caused by the PKC activator was accompanied by a significant increase in the overflow of CGRP induced by anandamide in the untreated rats. It is proposed that the overexpression of the TRPV1 receptors and the increased content of CGRP could contribute to the enhancement of anandamide effects during the endotoxemic shock. An eventual phosphorylation event linked to the overflow of CGRP could also participate in the enhanced relaxation caused by anandamide in endotoxemia.

    Topics: Animals; Arachidonic Acids; Calcitonin Gene-Related Peptide; Endocannabinoids; Endotoxemia; Lipopolysaccharides; Male; Mesentery; Norepinephrine; Phorbols; Polyunsaturated Alkamides; Protein Kinase C; Rats; Rats, Sprague-Dawley; Tetradecanoylphorbol Acetate; Tongue; TRPV Cation Channels; Vasoconstrictor Agents; Vasodilation

2007
Potentiation of anandamide effects in mesenteric beds isolated from endotoxemic rats.
    The Journal of pharmacology and experimental therapeutics, 2003, Volume: 304, Issue:1

    The aim of the present experiments was to study the effects of exogenously added anandamide on transient norepinephrine (NE)-induced contractions in mesenteric beds isolated from adult male Sprague-Dawley rats 6 h after the i.p. administration of 5 mg kg(-1) lipopolysaccharide (LPS). LPS treatment induced a 3-fold increase in total nitric-oxide synthase (NOS) activity without modifying either the systolic blood pressure or the vascular reactivity to NE of the isolated mesenteric bed. The endocannabinoid anandamide (0.01-10 microM) caused concentration-dependent reductions of the contractile responses to NE in the isolated mesenteric bed. This effect was significantly potentiated after LPS treatment compared with the controls. Anandamide-induced reductions of the contractile responses to NE in mesenteric beds isolated from LPS-treated rats were unmodified by endothelium removal but significantly diminished by either the anandamide amidase inhibitor phenylmethylsulfonyl fluoride (200 microM) or the vanilloid receptor antagonist capsazepine (1 microM). The vanilloid receptor agonist capsaicin (0.01-100 nM) also caused concentration-dependent relaxations that were potentiated in mesenteric beds from LPS-treated rats. Nevertheless, they were unmodified by 1 microM capsazepine. It is concluded that the potentiation of anandamide relaxations after LPS treatment, which are evident at early stages of endotoxic shock, could involve the participation of an anandamide metabolite and might be mediated, at least in part, through a vanilloid receptor.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Blood Pressure; Cannabinoid Receptor Modulators; Capsaicin; Endocannabinoids; Endotoxemia; Enzyme Inhibitors; Lipopolysaccharides; Male; Muscle Relaxation; Muscle, Smooth, Vascular; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Norepinephrine; Phenylmethylsulfonyl Fluoride; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Receptors, Drug; Shock, Septic; Splanchnic Circulation; Vasoconstrictor Agents

2003