anandamide has been researched along with Brain-Injuries* in 7 studies
7 other study(ies) available for anandamide and Brain-Injuries
Article | Year |
---|---|
Endocannabinoid degradation inhibition improves neurobehavioral function, blood-brain barrier integrity, and neuroinflammation following mild traumatic brain injury.
Traumatic brain injury (TBI) is an increasingly frequent and poorly understood condition lacking effective therapeutic strategies. Inflammation and oxidative stress (OS) are critical components of injury, and targeted interventions to reduce their contribution to injury should improve neurobehavioral recovery and outcomes. Recent evidence reveals potential protective, yet short-lived, effects of the endocannabinoids (ECs), 2-arachidonoyl glycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA), on neuroinflammatory and OS processes after TBI. The aim of this study was to determine whether EC degradation inhibition after TBI would improve neurobehavioral recovery by reducing inflammatory and oxidative damage. Adult male Sprague-Dawley rats underwent a 5-mm left lateral craniotomy, and TBI was induced by lateral fluid percussion. TBI produced apnea (17±5 sec) and a delayed righting reflex (479±21 sec). Thirty minutes post-TBI, rats were randomized to receive intraperitoneal injections of vehicle (alcohol, emulphor, and saline; 1:1:18) or a selective inhibitor of 2-AG (JZL184, 16 mg/kg) or AEA (URB597, 0.3 mg/kg) degradation. At 24 h post-TBI, animals showed significant neurological and -behavioral impairment as well as disruption of blood-brain barrier (BBB) integrity. Improved neurological and -behavioral function was observed in JZL184-treated animals. BBB integrity was protected in both JZL184- and URB597-treated animals. No significant differences in ipsilateral cortex messenger RNA expression of interleukin (IL)-1β, IL-6, chemokine (C-C motif) ligand 2, tumor necrosis factor alpha, cyclooxygenase 2 (COX2), or nicotinamide adenine dinucleotide phosphate oxidase (NOX2) and protein expression of COX2 or NOX2 were observed across experimental groups. Astrocyte and microglia activation was significantly increased post-TBI, and treatment with JZL184 or URB597 blocked activation of both cell types. These findings suggest that EC degradation inhibition post-TBI exerts neuroprotective effects. Whether repeated dosing would achieve greater protection remains to be examined. Topics: Animals; Arachidonic Acids; Benzamides; Benzodioxoles; Blood-Brain Barrier; Blotting, Western; Brain Injuries; Carbamates; Disease Models, Animal; Endocannabinoids; Glycerides; Immunohistochemistry; Inflammation; Male; Neuroprotective Agents; Piperidines; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Real-Time Polymerase Chain Reaction; Recovery of Function | 2015 |
Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: In vivo studies.
Anandamide (AEA) is an endocannabinoid (EC) that modulates multiple functions in the CNS and that is released in areas of injury, exerting putative neuroprotective actions. In the present study, we have used intravital microscopy to analyze the role of the EC system in the glial response against an acute insult. Our data show that AEA modulates astroglial function in vivo by increasing connexin-43 hemichannel (HC) activity. Furthermore, the genetic inactivation of the AEA-degrading enzyme, fatty acid amide hydrolase (FAAH), also increased HC activity and enhanced the microglial response against an acute injury to the brain parenchyma, effects that were mediated by cannabinoid CB1 receptors. The contribution of ATP released through an astrocytic HC was critical for the microglial response, as this was prevented by the use of the HC blocker flufenamic acid and by apyrase. As could be expected, brain concentrations of AEA, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) were elevated in FAAH-null mice, while 2-arachidonoylglycerol (2-AG) concentrations remained unaltered. In summary, these findings demonstrate that AEA modifies glial functions by promoting an enhanced pro-inflammatory glial response in the brain. Topics: Adenosine Triphosphate; Amides; Amidohydrolases; Animals; Anti-Inflammatory Agents; Apyrase; Arachidonic Acids; Astrocytes; Brain; Brain Injuries; Connexin 43; Disease Models, Animal; Endocannabinoids; Ethanolamines; Flufenamic Acid; Glycerides; Lasers; Mice; Mice, Knockout; Mice, Transgenic; Microglia; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1 | 2015 |
Does the neuroprotective role of anandamide display diurnal variations?
The endocannabinoid system is a component of the neuroprotective mechanisms that an organism displays after traumatic brain injury (TBI). A diurnal variation in several components of this system has been reported. This variation may influence the recovery and survival rate after TBI. We have previously reported that the recovery and survival rate of rats is higher if TBI occurs at 1:00 than at 13:00. This could be explained by a diurnal variation of the endocannabinoid system. Here, we describe the effects of anandamide administration in rats prior to the induction of TBI at two different times of the day: 1:00 and 13:00. We found that anandamide reduced the neurological damage at both times. Nevertheless, its effects on bleeding, survival, food intake, and body weight were dependent on the time of TBI. In addition, we analyzed the diurnal variation of the expression of the cannabinoid receptors CB1R and CB2R in the cerebral cortex of both control rats and rats subjected to TBI. We found that CB1R protein was expressed more during the day, whereas its mRNA level was higher during the night. We did not find a diurnal variation for the CB2R. In addition, we also found that TBI increased CB1R and CB2R in the contralateral hemisphere and disrupted the CB1R diurnal cycle. Topics: Animals; Arachidonic Acids; Brain Injuries; Cannabinoid Receptor Antagonists; Cerebral Cortex; Circadian Rhythm; Disease Models, Animal; Endocannabinoids; Hemorrhage; Male; Neuroprotective Agents; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; RNA, Messenger; Survival Rate | 2013 |
Cannabinoid antagonist AM 281 reduces mortality rate and neurologic dysfunction after cecal ligation and puncture in rats.
The purpose of this study was to examine whether anandamide, an endogenous cannabinoid receptor ligand, is involved in the pathogenesis of septic encephalopathy.. Prospective, controlled study.. Male Wistar rats (7 wks old) were randomly divided into four groups as follows: group 1, control (0.5 mL of saline injected subcutaneously); group 2, sham (surgical abdominal incision and suturing were performed, but ligation and puncture of the cecum were omitted); group 3, cecal ligation and puncture (CLP); group 4, CLP + AM 281 ([N-morpholin-4-yl]-5-[2,4-yl]-5-[2,4-dichlorophenyl]-4-methyl-1H-pyrazole-3-carboxamide) as the cannabinoid receptor antagonist (1 mg/kg intraperitoneally).. Sepsis was induced by CLP under pentobarbital anesthesia (10 mg/kg intraperitoneally) with 1% isoflurane. A 2-Fr high-fidelity micromanometer catheter was inserted into the left ventricle via the right carotid artery to assess hemodynamics. Each of the rats was neurologically assessed at 30 mins and 12, 24, and 48 hrs after the treatment. The cytoplasmic levels of caspase-3 in the hippocampi were assayed before surgery and at 30 mins and 24 and 48 hrs after surgery using Western blotting techniques. To examine the effects of AM 281 on neurologic function and mortality rate, we set another control group treated solely with AM 281. Selective inducible nitric oxide synthase inhibitor, L-N6-(1-iminoethyl)-lysine (4 mg/kg), was injected intraperitoneally immediately after CLP to produce the CLP + L-N6-(1-iminoethyl)-lysine group to exclude the influence of depressed hemodynamics on neurologic impairment.. It was found that administration of AM 281 could prevent the hemodynamic changes induced by sepsis. Reflex responses, including the pinna, corneal, paw or tail flexion, and righting reflexes, and the escape response significantly decreased in the CLP and CLP + L-N6-(1-iminoethyl)-lysine groups at 48 hrs after the surgery. In contrast, no changes in these reflex responses were found between the CLP + AM 281 and control and sham groups. In addition, no effects of the administration of AM 281 on neurologic function and mortality rate in the control group were found. Tissue caspase-3 levels were elevated at 48 hrs after CLP in the CLP alone group (means +/- sd: control, 3.9 +/- 0.4; sham, 4.2 +/- 0.4; CLP, 7.1 +/- 1.0 [p < .01]; CLP + AM 281, 4.0 +/- 0.5 densitometric units). In addition, administration of AM 281 also decreased the mortality rate (p < .05).. Administration of AM 281 prevented the hemodynamic changes and development of neurologic dysfunction occurring in association with septic shock, and could decrease the mortality rate in experimentally induced septic shock in rats. Although further studies are necessary to determine whether endogenous cannabinoids cause septic encephalopathy in rats directly or via their effects on systemic hemodynamics, the beneficial effects of AM 281 on these rats might have significant therapeutic implications in cases of septic encephalopathy. Topics: Animals; Arachidonic Acids; Blood Pressure; Brain Injuries; Cannabinoid Receptor Modulators; Cerebrovascular Circulation; Constriction, Pathologic; Endocannabinoids; Heart Rate; Male; Morpholines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Sepsis | 2005 |
Cannabinoids and brain injury: therapeutic implications.
Mounting in vitro and in vivo data suggest that the endocannabinoids anandamide and 2-arachidonoyl glycerol, as well as some plant and synthetic cannabinoids, have neuroprotective effects following brain injury. Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission and reduce the production of tumour necrosis factor-alpha and reactive oxygen intermediates, which are factors in causing neuronal damage. The formation of the endocannabinoids anandamide and 2-arachidonoyl glycerol is strongly enhanced after brain injury, and there is evidence that these compounds reduce the secondary damage incurred. Some plant and synthetic cannabinoids, which do not bind to the cannabinoid receptors, have also been shown to be neuroprotective, possibly through their direct effect on the excitatory glutamate system and/or as antioxidants. Topics: Animals; Arachidonic Acids; Brain; Brain Injuries; Cannabinoid Receptor Modulators; Cannabinoids; Clinical Trials, Phase III as Topic; Dronabinol; Endocannabinoids; Glycerides; Humans; Neuroprotective Agents; Pain; Polyunsaturated Alkamides; Rats | 2002 |
Accumulation of the anandamide precursor and other N-acylethanolamine phospholipids in infant rat models of in vivo necrotic and apoptotic neuronal death.
It has been demonstrated that the endogenous cannabinoid receptor ligand, anandamide, and other N-acylethanolamines (NAEs), accumulate during neuronal injury in vitro, a process that may be linked to the neuroprotective effects of NAEs. The crucial step for generation of NAEs is the synthesis of the corresponding precursors, N-acylethanolamine phospholipids (NAPEs). However, it is unknown whether this key event for NAE formation is regulated differently in the context of insults causing necrotic or apoptotic neuronal death. To address this question, we monitored a range of cortical NAPE species in three infant rat models of in vivo neurodegeneration: (i) necrosis caused by intrastriatal injection of NMDA (25 nmol); (ii) apoptosis induced by systemic administration of the NMDA-receptor antagonist (+)MK-801 (3 x 0.5 mg/kg, i.p.); and (iii) apoptosis following focal necrosis triggered by concussive head trauma. A marked increase of all NAPE species was observed in both hemispheres 4 and 24 h after NMDA-induced injury, with a relatively larger increase in N-stearoyl-containing NAPE species. Thus, the percentage of the anandamide precursor fell from 1.1 to 0.5 mol %. In contrast, administration of (+)MK-801 did not alter cortical NAPE levels. Concussion head trauma resulted in a similar but less pronounced upregulation of NAPE levels at both 4 and 24 h as compared to NMDA injections. Increased levels of NAPE 24 h post-trauma possibly reflect that necrosis is still ongoing at this time point. Consequently, our data suggest that excitotoxic necrotic mechanisms of neurodegeneration, as opposed to apoptotic neurodegeneration, have a profound effect on in vivo NAE precursor homeostasis. Topics: Animals; Apoptosis; Arachidonic Acids; Brain Injuries; Cerebral Cortex; Corpus Striatum; Disease Models, Animal; Dizocilpine Maleate; Endocannabinoids; Ethanolamines; Male; N-Methylaspartate; Necrosis; Neurodegenerative Diseases; Neurons; Phospholipids; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Species Specificity; Wounds, Nonpenetrating | 2001 |
Exogenous anandamide protects rat brain against acute neuronal injury in vivo.
The endocannabinoid anandamide [N-arachidonoylethanolamine (AEA)] is thought to function as an endogenous protective factor of the brain against acute neuronal damage. However, this has never been tested in an in vivo model of acute brain injury. Here, we show in a longitudinal pharmacological magnetic resonance imaging study that exogenously administered AEA dose-dependently reduced neuronal damage in neonatal rats injected intracerebrally with the Na(+)/K(+)-ATPase inhibitor ouabain. At 15 min after injury, AEA (10 mg/kg) administered 30 min before ouabain injection reduced the volume of cytotoxic edema by 43 +/- 15% in a manner insensitive to the cannabinoid CB(1) receptor antagonist SR141716A. At 7 d after ouabain treatment, 64 +/- 24% less neuronal damage was observed in AEA-treated (10 mg/kg) rats compared with control animals. Coadministration of SR141716A prevented the neuroprotective actions of AEA at this end point. In addition, (1) no increase in AEA and 2-arachidonoylglycerol levels was detected at 2, 8, or 24 hr after ouabain injection; (2) application of SR141716A alone did not increase the lesion volume at days 0 and 7; and (3) the AEA-uptake inhibitor, VDM11, did not affect the lesion volume. These data indicate that there was no endogenous endocannabinoid tone controlling the acute neuronal damage induced by ouabain. Although our data seem to question a possible role of the endogenous cannabinoid system in establishing a brain defense system in our model, AEA may be used as a structural template to develop neuroprotective agents. Topics: Animals; Animals, Newborn; Arachidonic Acids; Blotting, Western; Brain; Brain Edema; Brain Injuries; Cannabinoid Receptor Modulators; Cannabinoids; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Glycerides; Longitudinal Studies; Magnetic Resonance Imaging; Microinjections; Neurons; Ouabain; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Receptors, Cannabinoid; Receptors, Drug; Rimonabant | 2001 |