anamorelin has been researched along with Disease-Models--Animal* in 3 studies
3 other study(ies) available for anamorelin and Disease-Models--Animal
Article | Year |
---|---|
Combination therapy with anamorelin and a myostatin inhibitor is advantageous for cancer cachexia in a mouse model.
Cancer cachexia is a multifactorial disease that causes continuous skeletal muscle wasting. Thereby, it seems to be a key determinant of cancer-related death. Although anamorelin, a ghrelin receptor agonist, has been approved in Japan for the treatment of cachexia, few medical treatments for cancer cachexia are currently available. Myostatin (MSTN)/growth differentiation factor 8, which belongs to the transforming growth factor-β family, is a negative regulator of skeletal muscle mass, and inhibition of MSTN signaling is expected to be a therapeutic target for muscle-wasting diseases. Indeed, we have reported that peptide-2, an MSTN-inhibiting peptide from the MSTN prodomain, alleviates muscle wasting due to cancer cachexia. Herein, we evaluated the therapeutic benefit of myostatin inhibitory D-peptide-35 (MID-35), whose stability and activity were more improved than those of peptide-2 in cancer cachexia model mice. The biologic effects of MID-35 were better than those of peptide-2. Intramuscular administration of MID-35 effectively alleviated skeletal muscle atrophy in cachexia model mice, and the combination therapy of MID-35 with anamorelin increased food intake and maximized grip strength, resulting in longer survival. Our results suggest that this combination might be a novel therapeutic tool to suppress muscle wasting in cancer cachexia. Topics: Animals; Biological Products; Cachexia; Disease Models, Animal; Hydrazines; Mice; Muscle, Skeletal; Muscular Atrophy; Myostatin; Neoplasms; Oligopeptides; Peptides; Receptors, Ghrelin; Transforming Growth Factors | 2022 |
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Effect of ghrelin and anamorelin (ONO-7643), a selective ghrelin receptor agonist, on tumor growth in a lung cancer mouse xenograft model.
Anamorelin (ONO-7643) is an orally active ghrelin receptor agonist in development for non-small cell lung cancer (NSCLC)-related anorexia/cachexia. It displays both orexigenic and anabolic properties via ghrelin mimetic activity and transient increases in growth hormone (GH). However, increasing GH and insulin-like growth factor-1 in cancer patients raises concerns of potentially stimulating tumor growth. Therefore, we investigated the effect of ghrelin and anamorelin on tumor growth in a murine NSCLC xenograft model.. Female nude mice (15-21/group) with established A549 tumors were administered ghrelin (2 mg/kg i.p.), anamorelin (3, 10, or 30 mg/kg p.o.), or vehicle controls daily for 28 days. Tumor growth, food consumption, and body weight were monitored. Murine growth hormone (mGH) and murine insulin-like growth factor-1 (mIGF-1) were measured in plasma.. Tumor growth progressed throughout the study, with no significant differences between treatment groups. Daily food consumption was also relatively unchanged, while the percentage of mean body weight gain at the end of treatment was significantly increased in animals administered 10 and 30 mg/kg compared with controls (p < 0.01). Peak mGH levels were significantly higher in ghrelin- and anamorelin-treated animals than in controls, while peak mIGF-1 levels were slightly elevated but not statistically significant. All regimens were well tolerated.. These findings demonstrate that neither anamorelin nor ghrelin promoted tumor growth in this model, despite increased levels of mGH and a trend of increased mIGF-1. Together with anamorelin's ability to increase body weight, these results support the clinical development of ghrelin receptor agonist treatments for managing NSCLC-related anorexia/cachexia. Topics: Animals; Anorexia; Body Weight; Cachexia; Carcinoma, Non-Small-Cell Lung; Disease Models, Animal; Eating; Female; Ghrelin; Growth Hormone; Humans; Insulin-Like Growth Factor I; Lung Neoplasms; Mice; Mice, Nude; Receptors, Ghrelin; Weight Gain; Xenograft Model Antitumor Assays | 2013 |