amyloid-beta-peptides has been researched along with Insulin-Resistance* in 4 studies
4 other study(ies) available for amyloid-beta-peptides and Insulin-Resistance
Article | Year |
---|---|
Palonosetron/Methyllycaconitine Deactivate Hippocampal Microglia 1, Inflammasome Assembly and Pyroptosis to Enhance Cognition in a Novel Model of Neuroinflammation.
Since westernized diet-induced insulin resistance is a risk factor in Alzheimer's disease (AD) development, and lipopolysaccharide (LPS) coexists with amyloid β (Aβ)1-42 in these patients, our AD novel model was developed to resemble sporadic AD by injecting LPS into high fat/fructose diet (HFFD)-fed rats. The neuroprotective potential of palonosetron and/or methyllycaconitine, 5-HT3 receptor and α7 nAChR blockers, respectively, was evaluated after 8 days of daily administration in HFFD/LPS rats. All regimens improved histopathological findings and enhanced spatial memory (Morris Water Maze); however, palonosetron alone or with methyllycaconitine promoted animal performance during novel object recognition tests. In the hippocampus, all regimens reduced the expression of glial fibrillary acidic protein and skewed microglia M1 to M2 phenotype, indicated by the decreased M1 markers and the enhanced M2 related parameters. Additionally, palonosetron and its combination regimen downregulated the expression of ASC/TMS1, as well as levels of inflammasome downstream molecules and abated cleaved caspase-1, interleukin (IL)-1β, IL-18 and caspase-11. Furthermore, ACh and 5-HT were augmented after being hampered by the insult. Our study speculates that blocking 5-HT3 receptor using palonosetron overrides methyllycaconitine to combat AD-induced neuroinflammation and inflammasome cascade, as well as to restore microglial function in a HFFD/LPS novel model for sporadic AD. Topics: Aconitine; Alzheimer Disease; Amyloid beta-Peptides; Animals; CARD Signaling Adaptor Proteins; Cognition; Diet, Western; Disease Models, Animal; Hippocampus; Humans; Inflammasomes; Inflammation; Insulin Resistance; Interleukin-18; Lipopolysaccharides; Microglia; Palonosetron; Peptide Fragments; Pyroptosis; Rats; Receptors, Serotonin, 5-HT3; Risk Factors; Spatial Memory | 2021 |
Brain Insulin Signaling Is Increased in Insulin-Resistant States and Decreases in FOXOs and PGC-1α and Increases in Aβ1-40/42 and Phospho-Tau May Abet Alzheimer Development.
Increased coexistence of Alzheimer disease (AD) and type 2 diabetes mellitus (T2DM) suggests that insulin resistance abets neurodegenerative processes, but linkage mechanisms are obscure. Here, we examined insulin signaling factors in brains of insulin-resistant high-fat-fed mice, ob/ob mice, mice with genetically impaired muscle glucose transport, and monkeys with diet-dependent long-standing obesity/T2DM. In each model, the resting/basal activities of insulin-regulated brain protein kinases, Akt and atypical protein kinase C (aPKC), were maximally increased. Moreover, Akt hyperactivation was accompanied by hyperphosphorylation of substrates glycogen synthase kinase-3β and mammalian target of rapamycin and FOXO proteins FOXO1, FOXO3A, and FOXO4 and decreased peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression. Akt hyperactivation was confirmed in individual neurons of anterocortical and hippocampal regions that house cognition/memory centers. Remarkably, β-amyloid (Aβ1-40/42) peptide levels were as follows: increased in the short term by insulin in normal mice, increased basally in insulin-resistant mice and monkeys, and accompanied by diminished amyloid precursor protein in monkeys. Phosphorylated tau levels were increased in ob/ob mice and T2DM monkeys. Importantly, with correction of hyperinsulinemia by inhibition of hepatic aPKC and improvement in systemic insulin resistance, brain insulin signaling normalized. As FOXOs and PGC-1α are essential for memory and long-term neuronal function and regeneration and as Aβ1-40/42 and phospho-tau may increase interneuronal plaques and intraneuronal tangles, presently observed aberrations in hyperinsulinemic states may participate in linking insulin resistance to AD. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Brain; Cell Cycle Proteins; Diabetes Mellitus, Type 2; Diet, High-Fat; Female; Forkhead Box Protein O1; Forkhead Box Protein O3; Forkhead Transcription Factors; Insulin; Insulin Resistance; Macaca mulatta; Male; Mice; Neurons; Obesity; Peptide Fragments; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Phosphorylation; Protein Kinase C; Proto-Oncogene Proteins c-akt; Signal Transduction; tau Proteins | 2016 |
Amyloid precursor protein expression is upregulated in adipocytes in obesity.
The aim of this study was to determine whether amyloid precursor protein (APP) is expressed in human adipose tissue, dysregulated in obesity, and related to insulin resistance and inflammation. APP expression was examined by microarray expression profiling of subcutaneous abdominal adipocytes (SAC) and cultured preadipocytes from obese and nonobese subjects. Quantitative real-time PCR (QPCR) was performed to confirm differences in APP expression in SAC and to compare APP expression levels in adipose tissue, adipocytes, and stromal vascular cells (SVCs) from subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) specimens. Adipose tissue samples were also examined by western blot and immunofluorescence confocal microscopy. Microarray studies demonstrated that APP mRNA expression levels were higher in SAC (approximately 2.5-fold) and preadipocytes (approximately 1.4) from obese subjects. Real-time PCR confirmed increased APP expression in SAC in a separate group of obese compared with nonobese subjects (P=0.02). APP expression correlated to in vivo indices of insulin resistance independently of BMI and with the expression of proinflammatory genes, such as monocyte chemoattractant protein-1 (MCP-1) (R=0.62, P=0.004), macrophage inflammatory protein-1alpha (MIP-1alpha) (R=0.60, P=0.005), and interleukin-6 (IL-6) (R=0.71, P=0.0005). Full-length APP protein was detected in adipocytes by western blotting and APP and its cleavage peptides, Abeta40 and Abeta42, were observed in SAT and VAT by immunofluorescence confocal microscopy. In summary, APP is highly expressed in adipose tissue, upregulated in obesity, and expression levels correlate with insulin resistance and adipocyte cytokine expression levels. These data suggest a possible role for APP and/or Abeta in the development of obesity-related insulin resistance and adipose tissue inflammation. Topics: Adipocytes; Adult; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Blotting, Western; Body Mass Index; Case-Control Studies; Cells, Cultured; Female; Gene Expression Profiling; Humans; Inflammation Mediators; Insulin Resistance; Intra-Abdominal Fat; Male; Microscopy, Confocal; Obesity; Oligonucleotide Array Sequence Analysis; Panniculitis; Peptide Fragments; Polymerase Chain Reaction; Protease Nexins; Receptors, Cell Surface; RNA, Messenger; Stromal Cells; Subcutaneous Fat, Abdominal; Up-Regulation | 2008 |
Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease.
Recent epidemiological evidence indicates that insulin resistance, a proximal cause of Type II diabetes [a non-insulin dependent form of diabetes mellitus (NIDDM)], is associated with an increased relative risk for Alzheimer's disease (AD). In this study we examined the role of dietary conditions leading to NIDDM-like insulin resistance on amyloidosis in Tg2576 mice, which model AD-like neuropathology. We found that diet-induced insulin resistance promoted amyloidogenic beta-amyloid (Abeta) Abeta1-40 and Abeta1-42 peptide generation in the brain that corresponded with increased gamma-secretase activities and decreased insulin degrading enzyme (IDE) activities. Moreover, increased Abeta production also coincided with increased AD-type amyloid plaque burden in the brain and impaired performance in a spatial water maze task. Further exploration of the apparent interrelationship of insulin resistance to brain amyloidosis revealed a functional decrease in insulin receptor (IR)-mediated signal transduction in the brain, as suggested by decreased IR beta-subunit (IRbeta) Y1162/1163 autophosphorylation and reduced phosphatidylinositol 3 (PI3)-kinase/pS473-AKT/Protein kinase (PK)-B in these same brain regions. This latter finding is of particular interest given the known inhibitory role of AKT/PKB on glycogen synthase kinase (GSK)-3alpha activity, which has previously been shown to promote Abeta peptide generation. Most interestingly, we found that decreased pS21-GSK-3alpha and pS9-GSK-3beta phosphorylation, which is an index of GSK activation, positively correlated with the generation of brain C-terminal fragment (CTF)-gamma cleavage product of amyloid precursor protein, an index of gamma-secretase activity, in the brain of insulin-resistant relative to normoglycemic Tg2576 mice. Our study is consistent with the hypothesis that insulin resistance may be an underlying mechanism responsible for the observed increased relative risk for AD neuropathology, and presents the first evidence to suggest that IR signaling can influence Abeta production in the brain. Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Amyloid Precursor Protein Secretases; Amyloidosis; Animals; Aspartic Acid Endopeptidases; Brain; Cyclic AMP-Dependent Protein Kinase Type II; Cyclic AMP-Dependent Protein Kinases; Dietary Fats; Disease Models, Animal; Endopeptidases; Female; Glycogen Synthase Kinase 3; Humans; Insulin Resistance; Insulysin; Maze Learning; Mice; Mice, Transgenic; Nerve Tissue Proteins; Peptide Fragments; Phosphatidylinositol 3-Kinases; Phosphorylation; Plaque, Amyloid; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Receptor, Insulin; Signal Transduction; Spatial Behavior | 2004 |