amyloid-beta-peptides and Chronic-Disease

amyloid-beta-peptides has been researched along with Chronic-Disease* in 9 studies

Other Studies

9 other study(ies) available for amyloid-beta-peptides and Chronic-Disease

ArticleYear
Scutellarin Ameliorates Learning and Memory Deficit via Suppressing β-Amyloid Formation and Microglial Activation in Rats with Chronic Cerebral Hypoperfusion.
    The American journal of Chinese medicine, 2018, Volume: 46, Issue:6

    Chronic cerebral hypoperfusion is considered as a pivotal factor of cognitive impairment that occurs in cerebrovascular diseases. This study investigated the ameliorating effect of scutellarin (SCT) on spatial cognitive impairment and β-amyloid (Aβ) formation in rats with chronic cerebral hypoperfusion induced by permanent bilateral common carotid artery occlusion (pBCAO). SCT is a flavonoid in medicinal herb of Erigeron breviscapus (vant.) Hand. Mazz. known to have neuroprotective, antioxidative and anti-inflammatory effects. However, the beneficial effect and pivotal mechanism of SCT on cognitive impairment are still unclear. SCT was treated orally with two doses (10 or 30 mg/kg) for 4 weeks. Results of Morris water maze test performed on the ninth week after pBCAO revealed that SCT (30 mg/kg)-treated rats had significantly shortened escape latencies in acquisition training trials, significantly prolonged swimming time at the platform and its surrounding zone, significant increase in memory score, significant reduction in the number of target heading, and significant reduction in the time required for the first target heading during the retention trial compared to rats in the sham-control group. SCT significantly inhibited the production of Aβ(1-40) and Aβ(1–42) in brain tissues. However, SCT significantly upregulated the expression levels of amyloid precursor protein and β-site APP-converting enzyme-1 in the hippocampus. In addition, SCT significantly inhibited the activation of Iba1-expressing microglia in brain tissues. The results suggest that SCT can exert ameliorating effect on spatial cognitive impairment caused by chronic cerebral hypoperfusion through suppressing Aβ formation and microglial activation in brain tissues. Therefore, SCT can be used as a beneficial drug for vascular dementia and Alzheimer's disease.

    Topics: Administration, Oral; Amyloid beta-Peptides; Animals; Apigenin; Brain; Calcium-Binding Proteins; Chronic Disease; Erigeron; Glucuronates; Hypoxia-Ischemia, Brain; Learning Disabilities; Male; Memory Disorders; Microfilament Proteins; Microglia; Peptide Fragments; Phytotherapy; Rats, Sprague-Dawley

2018
Altered expression of neurofilament 200 and amyloid-β peptide (1-40) in a rat model of chronic cerebral hypoperfusion.
    Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 2015, Volume: 36, Issue:5

    Chronic cerebral hypoperfusion (CCH) is damaging to white matter in the brain. So far few studies have investigated long-term axonal damage following CCH. The aim of this study was to investigate the involvement of neurofilament 200 (NF200) and amyloid-β (1-40) [Aβ (1-40)] in the pathological mechanism for neuronal damage, and to quantify changes in their expression over time in a rat model of CCH. A rat model of CCH was established using partial bilateral ligation of the common carotid arteries. The extent of stenosis was verified by measuring the changes in cerebral blood flow after surgery. Histology was used to assess hippocampal neuronal pathology, and immunohistochemistry was used to quantify the expression of NF200 and Aβ (1-40) at 2, 4, and 12 weeks after surgery. The cerebral blood flow reduced to 33.89 ± 5.48 % at 2 weeks, 36.83 ± 4.63 % at 4 weeks and 51.44 ± 4.90 % at 12 weeks. Immunofluorescence staining of neuronal perikarya sections revealed a marked decrease in the population of surviving pyramidal cells in the hippocampal CA1 region, a significant up-regulation in the expression of Aβ (1-40), and a significant reduction in the expression of NF200 following CCH surgery. Moreover, this trend was increasingly obvious over time. Our data demonstrate that CCH leads to axonal damage over time. We also confirmed that the expression of Aβ (1-40) and NF200 may be useful biomarkers of axonal damage following CCH.

    Topics: Amyloid beta-Peptides; Animals; Axons; Brain; Brain Ischemia; Cerebrovascular Circulation; Chronic Disease; Disease Models, Animal; Gene Expression Regulation; Male; Neurofilament Proteins; Neurons; Peptide Fragments; Rats; Rats, Sprague-Dawley; Time Factors

2015
Oxidative stress caused by ozone exposure induces β-amyloid 1-42 overproduction and mitochondrial accumulation by activating the amyloidogenic pathway.
    Neuroscience, 2015, Sep-24, Volume: 304

    Oxidative stress is a major risk factor for Alzheimer's disease (AD) that has been suggested to be the trigger of AD pathology. However, whether oxidative damage precedes and contributes directly to the intracellular accumulation of beta amyloid 1-42 (βA42) peptide remains a matter of debate. Chronic exposure to low doses of ozone similar to the levels during a day of high pollution in México City causes a state of oxidative stress that elicits progressive neurodegeneration in the hippocampi of rats. Several reports have demonstrated that the mitochondria are among the first organelles to be affected by oxidative stress and βA42 toxicity and act as sites of the accumulation of βA42, which affects energy metabolism. However, the mechanisms related to the neurodegeneration process and organelle damage that occur in conditions of chronic exposure to low doses of ozone have not been demonstrated. To analyze the effect of chronic ozone chronic exposure on changes in the production and accumulation of the βA42 and βA40 peptides in the mitochondria of hippocampal neurons of rats exposed to ozone, we examined the mitochondrial expression levels of Presenilins 1 and 2 and ADAM10 to detect changes related to the oxidative stress caused by low doses of ozone (0.25ppm). The results revealed significant accumulations of βA42 peptide in the mitochondrial fractions on days 60 and 90 of ozone exposure along with reductions in beta amyloid 1-40 accumulation, significant overexpressions of Pres2 and significant reductions in ADAM10 expression. Beta amyloid immunodetection revealed that there were some intracellular deposits of βA42 and that βA42 and the mitochondrial markers OPA1 and COX1 colocalized. These results indicate that the time of exposure to ozone and the accumulation of βA42 in the mitochondria of the hippocampal cells of rats were correlated. Our results suggest that the accumulation of the βA42 peptide may promote mitochondrial dysfunction due to its accumulation and overproduction.

    Topics: ADAM Proteins; ADAM10 Protein; Air Pollutants; Amyloid beta-Peptides; Animals; Chronic Disease; Disease Models, Animal; Hippocampus; Male; Mitochondria; Oxidative Stress; Ozone; Peptide Fragments; Presenilin-1; Presenilin-2; Random Allocation; Rats, Wistar; Signal Transduction

2015
Chronic psychosocial stress enhances long-term depression in a subthreshold amyloid-beta rat model of Alzheimer's disease.
    Journal of neurochemistry, 2011, Volume: 119, Issue:2

    In addition to genetic aspects, environmental factors such as stress may also play a critical role in the etiology of the late onset, sporadic Alzheimer's disease (AD). The present study examined the effect of chronic psychosocial stress in a sub-threshold Aβ (subAβ) rat model of AD on long-term depression by two techniques: electrophysiological recordings of synaptic plasticity in anesthetized rats, and immunoblot analysis of memory- and AD-related signaling molecules. Chronic psychosocial stress was induced using a rat intruder model. The subAβ rat model of AD, which was intended to represent outwardly normal individuals with a pre-disposition to AD, was induced by continuous infusion of 160 pmol/day Aβ₁₋₄₂ via a 14-day i.c.v. osmotic pump. Results from electrophysiological recordings showed that long-term depression evoked in stress/subAβ animals was significantly enhanced compared with that in animals exposed to stress or subAβ infusion alone. Molecular analysis of various signaling molecules 1 h after induction of long-term depression revealed an increase in the levels of calcineurin and phosphorylated CaMKII in groups exposed to stress compared with other groups. The levels of the brain-derived neurotrophic factor (BDNF) were significantly decreased in stress/subAβ animals but not in stress or subAβ animals. In addition, the levels of beta-site amyloid precursor protein cleaving enzyme were markedly increased in stress/subAβ. These findings suggest that chronic stress may accelerate the impairment of synaptic plasticity and consequently cognition in individuals 'at-risk' for AD.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid Precursor Protein Secretases; Animals; Aspartic Acid Endopeptidases; Blotting, Western; Brain-Derived Neurotrophic Factor; CA1 Region, Hippocampal; Calcineurin; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Chronic Disease; Depression; Electrophysiological Phenomena; Hippocampus; Infusion Pumps, Implantable; Male; Peptide Fragments; Rats; Rats, Wistar; Risk; Social Environment; Stress, Psychological; Synaptic Transmission

2011
Chronic cerebral hypoperfusion accelerates amyloid beta deposition in APPSwInd transgenic mice.
    Brain research, 2009, Oct-19, Volume: 1294

    Chronic cerebral ischemia may accelerate clinicopathological changes in Alzheimer's disease. We have examined whether chronic cerebral hypoperfusion accelerates amyloid beta deposition in amyloid protein precursor transgenic (APP-Tg) mouse. At 5, 8, and 11 months of age, C57Bl/6J male mice overexpressing a mutant form of the human APP bearing the both Swedish (K670N/M671L) and the Indiana (V717F) mutations (APPSwInd) and their litterrmates were subjected to either sham operation or bilateral carotid artery stenosis (BCAS) using microcoils with an internal diameter of 0.18 mm (short-period group). One month after the sham operation or BCAS, these animals were examined by immunohistochemistry for glial fibrillary acidic protein, amyloid beta(1-40) (Abeta(1-40)), amyloid beta(1-42) (Abeta(1-42)), as well as Western blotting and filter assay for Abeta. Another batch of the littermates of APPSwInd mice were subjected to either sham operation or BCAS at 3 months and were examined in the same manner after survival for 9 months (long-period group). In the BCAS-treated group, the white matter was rarefied and astroglia was proliferated. Amyloid beta(1-40) immunoreactivity was found in a few axons in the white matter after BCAS, whereas Abeta(1-42) was accumulated in the scattered cortical neurons and the axons at ages of 6 months and thereafter in the short- and long-period groups. In the neuropil, both Abeta(1-40) and Abeta(1-42) were deposited in the sham-operated and BCAS-treated mice at ages of 9 and 12 months. There were no differences between the short-period group at ages of 12 months and the long-period group. Filter assay showed an increase of Abeta fibrils in the extracellular enriched fraction. Taken together, chronic cerebral hypoperfusion increased Abeta fibrils and induced Abeta deposition in the intracellular compartment and, therefore, may accelerate the pathological changes of Alzheimer's disease.

    Topics: Aging; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Astrocytes; Brain; Cerebrovascular Circulation; Cerebrovascular Disorders; Chronic Disease; Glial Fibrillary Acidic Protein; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Mutation; Neurons; Peptide Fragments; Protease Nexins; Receptors, Cell Surface; Time Factors

2009
Chronic hypoxia potentiates capacitative Ca2+ entry in type-I cortical astrocytes.
    Journal of neurochemistry, 2003, Volume: 85, Issue:5

    Prolonged hypoxia exerts profound effects on cell function, and has been associated with increased production of amyloid beta peptides (A beta Ps) of Alzheimer's disease. Here, we have investigated the effects of chronic hypoxia (2.5% O2, 24 h) on capacitative Ca2+ entry (CCE) in primary cultures of rat type-I cortical astrocytes, and compared results with those obtained in astrocytes exposed to A beta Ps. Chronic hypoxia caused a marked enhancement of CCE that was observed after intracellular Ca2+ stores were depleted by bradykinin application or by exposure to thapsigargin (1 microM). Exposure of cells for 24 h to 1 microM A beta P(1-40) did not alter CCE. Enhancement of CCE was not attributable to cell hyperpolarization, as chronically hypoxic cells were significantly depolarized as compared with controls. Mitochondrial inhibition [by FCCP (10 microM) and oligomycin (2.5 microg/mL)] suppressed CCE in all three cell groups, but more importantly there were no significant differences in the magnitude of CCE in the three astrocyte groups under these conditions. Similarly, the antioxidants melatonin and Trolox abolished the enhancement of CCE in hypoxic cells. Our results indicate that chronic hypoxia augments CCE in cortical type-I astrocytes, a finding which is not mimicked by A beta P(1-40) and appears to be dependent on altered mitochondrial function.

    Topics: Amyloid beta-Peptides; Animals; Animals, Newborn; Astrocytes; Bradykinin; Calcium; Calcium Channel Blockers; Cell Hypoxia; Cells, Cultured; Cerebral Cortex; Chelating Agents; Chronic Disease; Enzyme Inhibitors; Hypoxia, Brain; Lanthanum; Membrane Potentials; Mitochondria; Peptide Fragments; Rats; Time

2003
Hippocampal nitric oxide upregulation precedes memory loss and A beta 1-40 accumulation after chronic brain hypoperfusion in rats.
    Neurological research, 2003, Volume: 25, Issue:6

    Chronic brain hypoperfusion (CBH) using permanent occlusion of both common carotid arteries in an aging rat model, has been shown to mimic human mild cognitive impairment (MCI), an acknowledged high risk condition that often converts to Alzheimer's disease. An aging rat model was used to determine whether hippocampal nitric oxide (NO) is abnormally expressed following CBH for two or eight weeks. At each time point, spatial memory was measured with the Morris water maze and hippocampal A beta 1-40/1-42 concentrations were obtained using sandwich ELISA. Real-time amperometric measures of NO representing the constitutive isoforms of neuronal nitric oxide synthase (nNOS) and endothelial (e)NOS were also taken at each time point to ascertain whether NO levels changed as a result of CBH, and if so, whether such NO changes preceded or followed any memory or amyloid-beta pathology. We found that two weeks after CBH, NO hippocampal levels were upregulated nearly four-fold when compared to nonoccluded rats but no alteration in spatial memory of A beta products were observed at this time point. By contrast, NO concentration had declined to control levels by eight weeks but spatial memory was found significantly impaired and A beta 1-40 (but not A beta 1-42) had increased in the CBH group when compared to control rats. Since changes in shear stress are known to upregulate eNOS but generally not nNOS, these results suggest that shear stress induced by CBH hyperactivated vascular NO derived from eNOS in the first two weeks as a reaction by the capillary endothelium to maintain homeostasis of local cerebral blood flow. The return of vascular NO to basal levels after eight weeks of CBH may have triggered metabolic changes within hippocampal cells resulting in hippocampal dysfunction as reflected by spatial memory impairment and by accumulation of A beta 1-40 peptide. In conclusion, our study shows that CBH initiates spatial memory loss in aging rats thus mimicking human MCI and also increases A beta 1-40 in the hippocampus. The memory and amyloid changes are preceded by NO upregulation in the hippocampus. These preliminary findings may be important in understanding, at least in part, the molecular mechanisms that precede memory impairment during chronic brain ischemia and as such, the pre-clinical stage leading to Alzheimer's disease.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Cerebrovascular Circulation; Cerebrovascular Disorders; Chronic Disease; Disease Models, Animal; Endothelium, Vascular; Hippocampus; Hypotension; Male; Maze Learning; Memory Disorders; Neurons; Nitric Oxide; Nitric Oxide Synthase; Peptide Fragments; Rats; Rats, Sprague-Dawley; Stress, Mechanical; Up-Regulation

2003
Memory impairment induced by chronic intracerebroventricular infusion of beta-amyloid (1-40) involves downregulation of protein kinase C.
    Brain research, 2002, Dec-13, Volume: 957, Issue:2

    Signaling pathways underlying the cognitive deficit of the Alzheimer's disease (AD) are not completely understood. Protein kinase C (PKC), a major neuronal protein plays a critical role in cellular signal transduction and it is known to be subjected to modulation in AD. We showed previously that, chronic infusion of beta-amyloid (1-40) into rat cerebroventricle leads to deficit in spatial and non-spatial memory formation. As an attempt to identify the cellular correlates of the memory deficit, in the present study we investigated the PKC activation in different brain areas. Chronic infusion of beta-amyloid (1-40) for 14 days into the rat cerebroventricle decreased the activity of soluble protein kinase C (PKC) in the hippocampus. Subcellular translocation of PKC to membrane fraction in hippocampal slices of rats treated with beta-amyloid (1-40) was completely abolished under acute stimulation with 0.5 microM phorbol-dibutyrate (PDBu). We also reported a decreased affinity (k(D)) for PDBu binding in the hippocampus, cerebral cortex and striatum. The total number of binding sites for PDBu (B(max)) was increased, in the three brain areas analyzed on the day 14, but the changes were not statistically significant. Our data indicate that chronic accumulation of beta-amyloid (1-40) into the rat brain reduced activation of PKC, effect that would substantially contribute to the memory deficit found in these animals.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Binding Sites; Brain; Cell Membrane; Cerebral Cortex; Chronic Disease; Disease Models, Animal; Down-Regulation; Hippocampus; Injections, Intraventricular; Male; Memory Disorders; Neostriatum; Peptide Fragments; Phorbol 12,13-Dibutyrate; Protein Kinase C; Protein Transport; Rats; Rats, Wistar; Subcellular Fractions

2002
Highly conserved and disease-specific patterns of carboxyterminally truncated Abeta peptides 1-37/38/39 in addition to 1-40/42 in Alzheimer's disease and in patients with chronic neuroinflammation.
    Journal of neurochemistry, 2002, Volume: 81, Issue:3

    Human lumbar CSF patterns of Abeta peptides were analysed by urea-based beta-amyloid sodium dodecyl sulphate polyacrylamide gel electrophoresis with western immunoblot (Abeta-SDS-PAGE/immunoblot). A highly conserved pattern of carboxyterminally truncated Abeta1-37/38/39 was found in addition to Abeta1-40 and Abeta1-42. Remarkably, Abeta1-38 was present at a higher concentration than Abeta1-42, being the second prominent Abeta peptide species in CSF. Patients with Alzheimer's disease (AD, n = 12) and patients with chronic inflammatory CNS disease (CID, n = 10) were differentiated by unique CSF Abeta peptide patterns from patients with other neuropsychiatric diseases (OND, n = 37). This became evident only when we investigated the amount of Abeta peptides relative to their total Abeta peptide concentration (Abeta1-x%, fractional Abeta peptide pattern), which may reflect disease-specific gamma-secretase activities. Remarkably, patients with AD and CID shared elevated Abeta1-38% values, whereas otherwise the patterns were distinct, allowing separation of AD from CID or OND patients without overlap. The presence of one or two ApoE epsilon4 alleles resulted in an overall reduction of CSF Abeta peptides, which was pronounced for Abeta1-42. The severity of dementia was significantly correlated to the fractional Abeta peptide pattern but not to the absolute Abeta peptide concentrations.

    Topics: Adult; Aged; Alzheimer Disease; Amyloid beta-Peptides; Apolipoprotein E4; Apolipoproteins E; Biomarkers; Blotting, Western; Central Nervous System; Central Nervous System Diseases; Chronic Disease; Conserved Sequence; Electrophoresis, Polyacrylamide Gel; Encephalitis; Female; Humans; Immunoblotting; Male; Middle Aged; Peptide Fragments; Predictive Value of Tests; Severity of Illness Index; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

2002