amyloid-beta-peptides has been researched along with Brain-Concussion* in 4 studies
4 other study(ies) available for amyloid-beta-peptides and Brain-Concussion
Article | Year |
---|---|
Higher exosomal phosphorylated tau and total tau among veterans with combat-related repetitive chronic mild traumatic brain injury.
The objective of the study is to measure plasma and exosomal levels of tau, phosphorylated tau (p-tau), and amyloid beta (Aβ) in Veterans with historical mild traumatic brain injury (mTBI) and chronic neuropsychological symptoms.. Tau, p-tau, Aβ40, and Aβ42 were measured by ultrasensitive immunoassay in plasma and exosomes from 195 Veterans enrolled in the Chronic Effects of Neurotrauma Consortium Multicenter Observational Study. Protein biomarkers were compared among groups with and without mTBI with loss of consciousness (LOC) or post-traumatic amnesia (PTA), and also in those with and without repetitive (≥3) mTBI (rTBI) compared to those with 0 (TBI-neg) and 1-2 mTBI.. There were no differences in measures of plasma and exosomal protein levels among mTBI with LOC or PTA, mTBI with alteration of consciousness only or TBI-neg. Exosomal tau and exosomal p-tau were elevated in rTBI compared to those with 2 or fewer mTBIs and TBI-neg (p < 0.05). Elevations of exosomal tau and p-tau significantly correlated with post-traumatic and post-concussive symptoms, with exosomal tau also relating specifically to cognitive, affective, and somatic post-concussive symptoms (p < 0.05).. rTBI is associated with elevations of exosomal p-tau and exosomal tau, suggesting that blood-based exosomes may provide a peripheral source of informative, centrally derived biomarkers in remote mTBI and that rTBI may contribute to chronic neuropsychological symptoms. Topics: Adult; Amyloid beta-Peptides; Brain Concussion; Brain Injury, Chronic; Cognition Disorders; Cross-Sectional Studies; Female; Humans; Male; Middle Aged; Mood Disorders; Peptide Fragments; Phosphorylation; Surveys and Questionnaires; tau Proteins; Veterans | 2018 |
Higher exosomal tau, amyloid-beta 42 and IL-10 are associated with mild TBIs and chronic symptoms in military personnel.
Identify biomarkers in peripheral blood that relate to chronic post-concussive and behavioural symptoms following traumatic brain injuries (TBIs) to ultimately improve clinical management.. We compared military personnel with mild TBIs (mTBIs) (n = 42) to those without TBIs (n = 22) in concentrations of tau, amyloid-beta (Aβ42) and cytokines (tumour necrosis factor alpha (TNFα, interleukin (IL)-6 and -10) in neuronal-derived exosomes from the peripheral blood. We utilized nanosight technology coupled with ultra-sensitivity immunoassay methods. We also examined the impact of post-concussive and behavioural symptoms including depression and post-traumatic stress disorder (PTSD) on these neuronal-derived markers.. We report that concentrations of exosomal tau (F. These findings suggest that chronic post-concussive symptoms following an mTBI relate to altered exosomal activity, and that greater tau pathology may underlie chronic post-concussive symptoms that develop following mTBIs. It also suggests that central inflammatory activity contributes to PTSD symptoms following an mTBI, providing necessary insights into the role of inflammation in chronic PTSD symptoms. Topics: Adult; Amyloid beta-Peptides; Brain Concussion; Cytokines; Exosomes; Female; Humans; Interleukin-10; Male; Military Personnel; Peptide Fragments; tau Proteins; United States; Young Adult | 2018 |
Astroglial activation and altered amyloid metabolism in human repetitive concussion.
To determine whether postconcussion syndrome (PCS) due to repetitive concussive traumatic brain injury (rcTBI) is associated with CSF biomarker evidence of astroglial activation, amyloid deposition, and blood-brain barrier (BBB) impairment.. A total of 47 participants (28 professional athletes with PCS and 19 controls) were assessed with lumbar puncture (median 1.5 years, range 0.25-12 years after last concussion), standard MRI of the brain, and Rivermead Post-Concussion Symptoms Questionnaire (RPQ). The main outcome measures were CSF concentrations of astroglial activation markers (glial fibrillary acidic protein [GFAP] and YKL-40), markers reflecting amyloid precursor protein metabolism (Aβ38, Aβ40, Aβ42, sAPPα, and sAPPβ), and BBB function (CSF:serum albumin ratio).. Nine of the 28 athletes returned to play within a year, while 19 had persistent PCS >1 year. Athletes with PCS >1 year had higher RPQ scores and number of concussions than athletes with PCS <1 year. Median concentrations of GFAP and YKL-40 were higher in athletes with PCS >1 year compared with controls, although with an overlap between the groups. YKL-40 correlated with RPQ score and the lifetime number of concussions. Athletes with rcTBI had lower concentrations of Aβ40 and Aβ42 than controls. The CSF:serum albumin ratio was unaltered.. This study suggests that PCS may be associated with biomarker evidence of astroglial activation and β-amyloid (Aβ) dysmetabolism in the brain. There was no clear evidence of Aβ deposition as Aβ40 and Aβ42 were reduced in parallel. The CSF:serum albumin ratio was unaltered, suggesting that the BBB is largely intact in PCS. Topics: Adolescent; Adult; Amyloid beta-Peptides; Athletes; Brain Concussion; Chitinase-3-Like Protein 1; Cross-Sectional Studies; Female; Glial Fibrillary Acidic Protein; Humans; Male; Middle Aged; Peptide Fragments; Post-Concussion Syndrome; Retrospective Studies; Serum Albumin; Statistics as Topic; Time Factors; Trauma Severity Indices; Young Adult | 2017 |
Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury.
Traumatic brain injury is a well-recognized environmental risk factor for developing Alzheimer's disease. Repetitive concussive brain injury (RCBI) exacerbates brain lipid peroxidation, accelerates amyloid (Abeta) formation and deposition, as well as cognitive impairments in Tg2576 mice. This study evaluated the effects of vitamin E on these four parameters in Tg2576 mice following RCBI. Eleven-month-old mice were randomized to receive either regular chow or chow-supplemented with vitamin E for 4 weeks, and subjected to RCBI (two injuries, 24 h apart) using a modified controlled cortical impact model of closed head injury. The same dietary regimens were maintained up to 8 weeks post-injury, when the animals were killed for biochemical and immunohistochemical analyses after behavioral evaluation. Vitamin E-treated animals showed a significant increase in brain vitamin E levels and a significant decrease in brain lipid peroxidation levels. After RBCI, compared with the group on regular chow, animals receiving vitamin E did not show the increase in Abeta peptides, and had a significant attenuation of learning deficits. This study suggests that the exacerbation of brain oxidative stress following RCBI plays a mechanistic role in accelerating Alphabeta accumulation and behavioral impairments in the Tg2576 mice. Topics: Amyloid; Amyloid beta-Peptides; Amyloidosis; Animals; Antioxidants; Brain; Brain Chemistry; Brain Concussion; Cognition Disorders; Dietary Supplements; Dinoprost; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Female; Mice; Mice, Transgenic; Motor Activity; Oxidative Stress; Peptide Fragments; Vitamin E | 2004 |