amphotericin-b has been researched along with Coronavirus-Infections* in 1 studies
1 other study(ies) available for amphotericin-b and Coronavirus-Infections
Article | Year |
---|---|
LY6E Restricts Entry of Human Coronaviruses, Including Currently Pandemic SARS-CoV-2.
C3A is a subclone of the human hepatoblastoma HepG2 cell line with strong contact inhibition of growth. We fortuitously found that C3A was more susceptible to human coronavirus HCoV-OC43 infection than HepG2, which was attributed to the increased efficiency of virus entry into C3A cells. In an effort to search for the host cellular protein(s) mediating the differential susceptibility of the two cell lines to HCoV-OC43 infection, we found that ArfGAP with dual pleckstrin homology (PH) domains 2 (ADAP2), gamma-interferon-inducible lysosome/endosome-localized thiolreductase (GILT), and lymphocyte antigen 6 family member E (LY6E), the three cellular proteins identified to function in interference with virus entry, were expressed at significantly higher levels in HepG2 cells. Functional analyses revealed that ectopic expression of LY6E, but not GILT or ADAP2, in HEK 293 cells inhibited the entry of HCoV-O43. While overexpression of LY6E in C3A and A549 cells efficiently inhibited the infection of HCoV-OC43, knockdown of LY6E expression in HepG2 significantly increased its susceptibility to HCoV-OC43 infection. Moreover, we found that LY6E also efficiently restricted the entry mediated by the envelope spike proteins of other human coronaviruses, including the currently pandemic SARS-CoV-2. Interestingly, overexpression of serine protease TMPRSS2 or amphotericin treatment significantly neutralized the IFN-inducible transmembrane 3 (IFITM3) restriction of human coronavirus (CoV) entry, but did not compromise the effect of LY6E on the entry of human coronaviruses. The work reported herein thus demonstrates that LY6E is a critical antiviral immune effector that controls CoV infection and pathogenesis via a mechanism distinct from other factors that modulate CoV entry. Topics: Amino Acid Sequence; Amphotericin B; Antigens, Surface; Betacoronavirus; Cell Line; Coronavirus; Coronavirus Infections; COVID-19; Disease Susceptibility; Evolution, Molecular; GPI-Linked Proteins; Host-Pathogen Interactions; Humans; Pandemics; Pneumonia, Viral; Protein Sorting Signals; SARS-CoV-2; Spike Glycoprotein, Coronavirus; Virus Internalization | 2020 |