aminoethyl-isothiourea has been researched along with Inflammation* in 2 studies
2 other study(ies) available for aminoethyl-isothiourea and Inflammation
Article | Year |
---|---|
Nitric oxide synthase inhibitors have opposite effects on acute inflammation depending on their route of administration.
The bulk of published data has shown that NO is proinflammatory. However, there also exists the conflicting notion that NO may be protective during an inflammatory insult. In an attempt to resolve this issue, we have compared the effects on inflammation of a range of NO synthase (NOS) inhibitors given either directly to the site of the inflammatory lesion or systemically. It was found that in the carrageenin-induced pleurisy, a single intrapleural injection of the selective inducible NO inhibitors S-(2-aminoethyl) isothiourea (AE-ITU; 3 and 10 mg/kg) and N-(3-(aminomethyl)-benzyl) acetamidine (1400W; 10 mg/kg) or the selective endothelial cell NOS inhibitor L-N(5)(1-iminoethyl)-ornithine (10 mg/kg) not only exacerbated inflammation at the very early stages of the lesion (1-6 h), but also prevented inflammatory resolution. By contrast, administering NOS inhibitors systemically ameliorated the severity of inflammation throughout the reaction. To elucidate the mechanisms by which inhibition of NO synthesis locally worsened inflammation, we found an increase in histamine, cytokine-induced neutrophil chemoattractant, superoxide, and leukotriene B(4) levels at the inflammatory site. In conclusion, this work shows that the local production of NO is protective by virtue of its ability to regulate the release of typical proinflammatory mediators and, importantly, that NOS inhibitors have differential anti-inflammatory effects depending on their route of administration. Topics: Acute Disease; Amidines; Animals; Antioxidants; Benzylamines; Carrageenan; Disease Models, Animal; Drug Administration Schedule; Edema; Enzyme Inhibitors; Free Radical Scavengers; Inflammation; Inflammation Mediators; Injections; Injections, Intraperitoneal; Male; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; omega-N-Methylarginine; Pleura; Pleurisy; Rats; Rats, Wistar; Superoxides; Thiourea | 2001 |
Aminoethyl-isothiourea inhibits leukocyte production of reactive oxygen species and proinflammatory cytokines induced by streptococcal cell wall components in human whole blood.
The incidence of severe invasive disease caused by serogroup A streptococci (GAS) is increasing, and to elucidate the role of streptococcal cell wall components in the inflammatory response, human whole blood was stimulated with lipoteichoic acid (LTA, 0.005-50 microg/mL) and peptidoglycan (10 and 100 microg/ml) from Streptococcus pyogenes. Both stimulants increased dose dependently the leukocyte release of cytokines many thousand fold: tumor necrosis factor alpha (0 to 158,000+/-4,900 pg/mL), interleukin (IL)-1beta (85+/-56 to 31,000+/-4,600 pg/mL), IL-6 (30+/-11 to 34,800+/-15,000 pg/mL), and IL-8 (300+/-150 to 29,000+/-14,000 pg/mL). Intracellular leukocyte levels of reactive oxygen species (ROS) as measured by flow cytometry increased 15-20 fold, from 25 to 400-500 mean fluorescence intensity. Aminoethyl-isothiourea (AE-ITU), a relatively selective inhibitor of the inducible nitric oxide synthase (iNOS) and a ROS scavenger, reduced the cytokine production by 70-100%, and intracellular leukocyte ROS levels by 50-70% (all P < 0.05). The non-selective NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME) did not affect intracellular ROS levels, but it caused a moderate selective inhibition of IL-8 production. Leukocyte NO production (measured up to 36 h) was not enhanced by LTA, peptidoglycan, inactivated streptococci, or cytokine combinations. The mechanisms for the anti-inflammatory effects of AE-ITU may be through a reduction of intracellular ROS levels, or through a direct effect on signal transduction, whereas NO modulation is an unlikely mechanism. Topics: Cell Survival; Cell Wall; Cytokines; Dose-Response Relationship, Drug; Enzyme Inhibitors; Humans; In Vitro Techniques; Inflammation; Interleukin-1; Interleukin-6; Interleukin-8; Leukocytes; Lipopolysaccharides; NG-Nitroarginine Methyl Ester; Nitrates; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitrites; Peptidoglycan; Reactive Oxygen Species; Streptococcus pyogenes; Teichoic Acids; Thiourea; Tumor Necrosis Factor-alpha | 2001 |