amg-900 has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for amg-900 and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Combining the pan-aurora kinase inhibitor AMG 900 with histone deacetylase inhibitors enhances antitumor activity in prostate cancer.
Histone deacetylase inhibitors (HDACIs) are being tested in clinical trials for the treatment of solid tumors. While most studies have focused on the reexpression of silenced tumor suppressor genes, a number of genes/pathways are downregulated by HDACIs. This provides opportunities for combination therapy: agents that further disable these pathways through inhibition of residual gene function are speculated to enhance cell death in combination with HDACIs. A previous study from our group indicated that mitotic checkpoint kinases such as PLK1 and Aurora A are downregulated by HDACIs. We used in vitro and in vivo xenograft models of prostate cancer (PCA) to test whether combination of HDACIs with the pan-aurora kinase inhibitor AMG 900 can synergistically or additively kill PCA cells. AMG 900 and HDACIs synergistically decreased cell proliferation activity and clonogenic survival in DU-145, LNCaP, and PC3 PCA cell lines compared to single-agent treatment. Cellular senescence, polyploidy, and apoptosis was significantly increased in all cell lines after combination treatment. In vivo xenograft studies indicated decreased tumor growth and decreased aurora B kinase activity in mice treated with low-dose AMG 900 and vorinostat compared to either agent alone. Pharmacodynamics was assessed by scoring for phosphorylated histone H3 through immunofluorescence. Our results indicate that combination treatment with low doses of AMG 900 and HDACIs could be a promising therapy for future clinical trials against PCA. Topics: Animals; Aurora Kinases; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cellular Senescence; Disease Models, Animal; Histone Deacetylase Inhibitors; Histones; Humans; Male; Phthalazines; Polyploidy; Prostatic Neoplasms; Protein Kinase Inhibitors; Spindle Apparatus; Xenograft Model Antitumor Assays | 2014 |