amelubant has been researched along with Inflammation* in 3 studies
1 trial(s) available for amelubant and Inflammation
Article | Year |
---|---|
A randomized double blind, placebo controlled phase 2 trial of BIIL 284 BS (an LTB4 receptor antagonist) for the treatment of lung disease in children and adults with cystic fibrosis.
Airway inflammation, mediated in part by LTB4, contributes to lung destruction in patients with cystic fibrosis (CF). LTB(4)-receptor inhibition may reduce airway inflammation. We report the results of a randomized, double-blind, placebo-controlled study of the efficacy and safety of the leukotriene B(4) (LTB(4))-receptor antagonist BIIL 284 BS in CF patients.. CF patients aged ≥6 years with mild to moderate lung disease were randomized to oral BIIL 284 BS or placebo once daily for 24 weeks. Co-primary endpoints were change in FEV(1) and incidence of pulmonary exacerbation.. After 420 (155 children, 265 adults) of the planned 600 patients were randomized, the trial was terminated after a planned interim analysis revealed a significant increase in pulmonary related serious adverse events (SAEs) in adults receiving BIIL 284 BS. Final analysis revealed SAEs in 36.1% of adults receiving BIIL 284 BS vs. 21.2% receiving placebo (p = 0.007), and in 29.6% of children receiving BIIL 284 BS vs. 22.9% receiving placebo (p = 0.348). In adults, the incidence of protocol-defined pulmonary exacerbation was greater in those receiving BIIL 284 BS than in those receiving placebo (33.1% vs. 18.2% respectively; p = 0.005). In children, the incidence of protocol-defined pulmonary exacerbation was 19.8% in the BIIL 284 BS arm, and 25.7% in the placebo arm (p = 0.38).. While the cause of increased SAEs and exacerbations due to BIIL 284 BS is unknown, the outcome of this trial provides a cautionary tale for the administration of potent anti-inflammatory compounds to individuals with chronic infections, as the potential to significantly suppress the inflammatory response may increase the risk of infection-related adverse events. Topics: Adolescent; Adult; Amidines; Anti-Inflammatory Agents; Bronchoalveolar Lavage Fluid; Carbamates; Child; Cystic Fibrosis; Disease Progression; Double-Blind Method; Drug Monitoring; Drug-Related Side Effects and Adverse Reactions; Early Termination of Clinical Trials; Female; Humans; Inflammation; Male; Receptors, Leukotriene B4; Respiratory Function Tests; Risk Assessment; Sputum; Treatment Outcome | 2014 |
2 other study(ies) available for amelubant and Inflammation
Article | Year |
---|---|
BIIL 284 reduces neutrophil numbers but increases P. aeruginosa bacteremia and inflammation in mouse lungs.
A clinical study to investigate the leukotriene B(4) (LTB(4))-receptor antagonist BIIL 284 in cystic fibrosis (CF) patients was prematurely terminated due to a significantly increased risk of adverse pulmonary events. We aimed to establish the effect of BIIL284 in models of Pseudomonas aeruginosa lung infection, thereby contributing to a better understanding of what could have led to adverse pulmonary events in CF patients.. P. aeruginosa DNA in the blood of CF patients during and after acute pulmonary exacerbations and in stable patients with non-CF bronchiectasis (NCFB) and healthy individuals was assessed by PCR. The effect of BIIL 284 treatment was tested in an agar bead murine model of P. aeruginosa lung infection. Bacterial count and inflammation were evaluated in lung and other organs.. Most CF patients (98%) and all patients with NCFB and healthy individuals had negative P. aeruginosa DNA in their blood. Similarly, the P. aeruginosa-infected mice showed bacterial counts in the lung but not in the blood or spleen. BIIL 284 treatment decreased pulmonary neutrophils and increased P. aeruginosa numbers in mouse lungs leading to significantly higher bacteremia rates and lung inflammation compared to placebo treated animals.. Decreased airway neutrophils induced lung proliferation and severe bacteremia in a murine model of P. aeruginosa lung infection. These data suggest that caution should be taken when administering anti-inflammatory compounds to patients with bacterial infections. Topics: Adult; Amidines; Animals; Anti-Inflammatory Agents; Bacteremia; Carbamates; Cystic Fibrosis; Disease Models, Animal; Female; Humans; Inflammation; Leukocyte Count; Lung; Male; Mice; Neutrophils; Pseudomonas aeruginosa; Pseudomonas Infections; Receptors, Leukotriene B4; Treatment Outcome | 2014 |
Cooperative role of endogenous leucotrienes and platelet-activating factor in ischaemia-reperfusion-mediated tissue injury.
Insufficient oxygen delivery to organs leads to tissue dysfunction and cell death. Reperfusion, although vital to organ survival, initiates an inflammatory response that may both aggravate local tissue injury and elicit remote organ damage. Polymorphonuclear neutrophil (PMN) trafficking to remote organs following ischaemia/reperfusion (I/R) is associated with the release of lipid mediators, including leucotriene (LT) B4 , cysteinyl-LTs (CysLTs) and platelet-activating factor (PAF). Yet, their potentially cooperative role in regulating I/R-mediated inflammation has not been thoroughly assessed. The present study aimed to determine the cooperative role of lipid mediators in regulating PMN migration, tissue oedema and injury using selective receptor antagonists in selected models of I/R and dermal inflammation. Our results show that rabbits, pre-treated orally with BIIL 284 and/or WEB 2086 and MK-0571, were protected from remote tissue injury following I/R or dermal inflammation in an additive or synergistic manner when the animals were pre-treated with two drugs concomitantly. The functional selectivity of the antagonists towards their respective agonists was assessed in vitro, showing that neither BIIL 284 nor WEB 2086 prevented the inflammatory response to IL-8, C5a and zymosan-activated plasma stimulation. However, these agonists elicited LTB4 biosynthesis in isolated rabbit PMNs. Similarly, a cardioprotective effect of PAF and LTB4 receptor antagonists was shown following myocardial I/R in mice. Taken together, these results underscore the intricate involvement of LTB4 and PAF in each other's responses and provide further evidence that targeting both LTs and PAF receptors provides a much stronger anti-inflammatory effect, regulating PMN migration and oedema formation. Topics: Amidines; Animals; Azepines; Biological Assay; Carbamates; Dermis; Disease Models, Animal; Extravasation of Diagnostic and Therapeutic Materials; Extremities; Inflammation; Leukotriene B4; Leukotrienes; Male; Mice; Mice, Inbred C57BL; Myocardial Ischemia; Neutrophil Infiltration; Platelet Activating Factor; Platelet Membrane Glycoproteins; Propionates; Quinolines; Rabbits; Receptors, G-Protein-Coupled; Receptors, Leukotriene; Reperfusion Injury; Triazoles | 2013 |