am-630 and Sepsis

am-630 has been researched along with Sepsis* in 2 studies

Other Studies

2 other study(ies) available for am-630 and Sepsis

ArticleYear
Activation of CB2 receptor inhibits pyroptosis and subsequently ameliorates cecal ligation and puncture-induced sepsis.
    International immunopharmacology, 2021, Volume: 99

    Cannabinoid receptor 2 (CB2), whose activities are upregulated during sepsis, may be related to the regulation of inflammatory programmed cell death called pyroptosis. The aim of this study is to investigate the role of CB2 activation in attenuation of inflammation through inhibiting pyroptosis in cecal ligation puncture (CLP)-induced sepsis andlipopolysaccharide (LPS) + ATP-stimulated macrophages.. C57BL/6 mice were subjected to CLP procedure and treated with CB2 agonist HU308 and CB2 antagonist AM630. Lung tissues were collected for analyses of lung W/D ratio, inflammatory factors levels, and pyroptosis-related protein expression. Murine bone-marrow-derived macrophages (BMDM) were treated with LPS and ATP to construct a septic model in vitro in the presence of HU308 and AM630 for assessment of cell injury, cytokine levels and pyroptosis-related protein expression accordingly. To verify the relationship between CB2 receptors and pyroptosis in the process of inflammatory response, BMDM were transduced with CB2 receptors knockdown lentiviral vectors in the presence of HU308 and AM630 for assessment of pyroptosis-related protein expression.. CB2 activation ameliorated the release of inflammatory mediators. The results showed that CLP-induced pyroptosis was elevated, and CB2 agonist HU308 treatment inhibited the pyroptosis activity through a decrease of the protein levels of NLRP3 as well as caspase-1 and GSDMD activation. Similar results were obtained in BMDM after LPS and ATP treatment. Treatment with CB2 knockdown lentiviral particles prevented the HU308-induced decreases in cell pyroptosis, demonstrating that endogenous CB2 receptors are required for the cannabinoid-induced cell protection.. CB2 receptors activation plays a protective role in sepsis through inhibition of pyroptosis. The effect of CB2 receptors against pyroptosis depends on the existence of endogenous CB2 receptors.

    Topics: Adenosine Triphosphate; Animals; Cannabinoids; Cecum; Disease Models, Animal; Indoles; Inflammation; Ligation; Lipopolysaccharides; Lung; Macrophages; Male; Mice, Inbred C57BL; Primary Cell Culture; Punctures; Pyroptosis; Receptor, Cannabinoid, CB2; Sepsis

2021
Experimental cannabinoid 2 receptor-mediated immune modulation in sepsis.
    Mediators of inflammation, 2014, Volume: 2014

    Sepsis is a complex condition that results from a dysregulated immune system in response to a systemic infection. Current treatments lack effectiveness in reducing the incidence and mortality associated with this disease. The endocannabinoid system offers great promise in managing sepsis pathogenesis due to its unique characteristics. The present study explored the effect of modulating the CB2 receptor pathway in an acute sepsis mouse model. Endotoxemia was induced by intravenous injection of lipopolysaccharide (LPS) in mice and intestinal microcirculation was assessed through intravital microscopy. We found that HU308 (CB2 receptor agonist) reduced the number of adherent leukocytes in submucosal venules but did not restore muscular and mucosal villi FCD in endotoxemic mice. AM630 (CB2 receptor antagonist) maintained the level of adherent leukocytes induced by LPS but further reduced muscular and mucosal villi FCD. URB597 (FAAH inhibitor) and JZL184 (MAGL inhibitor) both reduced the number of adherent leukocytes in submucosal venules but did not restore the mucosal villi FCD. Using various compounds we have shown different mechanisms of activating CB2 receptors to reduce leukocyte endothelial interactions in order to prevent further inflammatory damage during sepsis.

    Topics: Animals; Endotoxemia; Indoles; Intestines; Leukocytes; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Microcirculation; Receptor, Cannabinoid, CB2; Sepsis

2014